Jay's Blog

知而不行为不知


  • 首页

  • 关于

  • 标签

  • 分类

  • 归档

  • 留言

  • 搜索

MySQL自增主键一定是连续的吗

发表于 2023-05-17 | 分类于 数据库 , MYSQL | 阅读次数:
字数统计: 2.8k 字 | 阅读时长 ≈ 10 分钟

作者:飞天小牛肉

原文:https://mp.weixin.qq.com/s/qci10h9rJx_COZbHV3aygQ

众所周知,自增主键可以让聚集索引尽量地保持递增顺序插入,避免了随机查询,从而提高了查询效率。

但实际上,MySQL 的自增主键并不能保证一定是连续递增的。

下面举个例子来看下,如下所示创建一张表:

自增值保存在哪里?

使用 insert into test_pk values(null, 1, 1) 插入一行数据,再执行 show create table 命令来看一下表的结构定义:

上述表的结构定义存放在后缀名为 .frm 的本地文件中,在 MySQL 安装目录下的 data 文件夹下可以找到这个 .frm 文件:

从上述表结构可以看到,表定义里面出现了一个 AUTO_INCREMENT=2,表示下一次插入数据时,如果需要自动生成自增值,会生成 id = 2。

但需要注意的是,自增值并不会保存在这个表结构也就是 .frm 文件中,不同的引擎对于自增值的保存策略不同:

1)MyISAM 引擎的自增值保存在数据文件中

2)InnoDB 引擎的自增值,其实是保存在了内存里,并没有持久化。第一次打开表的时候,都会去找自增值的最大值 max(id),然后将 max(id)+1 作为这个表当前的自增值。

举个例子:我们现在表里当前数据行里最大的 id 是 1,AUTO_INCREMENT=2,对吧。这时候,我们删除 id=1 的行,AUTO_INCREMENT 还是 2。

但如果马上重启 MySQL 实例,重启后这个表的 AUTO_INCREMENT 就会变成 1。 也就是说,MySQL 重启可能会修改一个表的 AUTO_INCREMENT 的值。

以上,是在我本地 MySQL 5.x 版本的实验,实际上,到了 MySQL 8.0 版本后,自增值的变更记录被放在了 redo log 中,提供了自增值持久化的能力 ,也就是实现了“如果发生重启,表的自增值可以根据 redo log 恢复为 MySQL 重启前的值”

也就是说对于上面这个例子来说,重启实例后这个表的 AUTO_INCREMENT 仍然是 2。

理解了 MySQL 自增值到底保存在哪里以后,我们再来看看自增值的修改机制,并以此引出第一种自增值不连续的场景。

自增值不连续的场景

自增值不连续场景 1

在 MySQL 里面,如果字段 id 被定义为 AUTO_INCREMENT,在插入一行数据的时候,自增值的行为如下:

  • 如果插入数据时 id 字段指定为 0、null 或未指定值,那么就把这个表当前的 AUTO_INCREMENT 值填到自增字段;
  • 如果插入数据时 id 字段指定了具体的值,就直接使用语句里指定的值。

根据要插入的值和当前自增值的大小关系,自增值的变更结果也会有所不同。假设某次要插入的值是 insert_num,当前的自增值是 autoIncrement_num:

  • 如果 insert_num < autoIncrement_num,那么这个表的自增值不变
  • 如果 insert_num >= autoIncrement_num,就需要把当前自增值修改为新的自增值

也就是说,如果插入的 id 是 100,当前的自增值是 90,insert_num >= autoIncrement_num,那么自增值就会被修改为新的自增值即 101

一定是这样吗?

非也~

了解过分布式 id 的小伙伴一定知道,为了避免两个库生成的主键发生冲突,我们可以让一个库的自增 id 都是奇数,另一个库的自增 id 都是偶数

这个奇数偶数其实是通过 auto_increment_offset 和 auto_increment_increment 这两个参数来决定的,这俩分别用来表示自增的初始值和步长,默认值都是 1。

所以,上面的例子中生成新的自增值的步骤实际是这样的:从 auto_increment_offset 开始,以 auto_increment_increment 为步长,持续叠加,直到找到第一个大于 100 的值,作为新的自增值。

所以,这种情况下,自增值可能会是 102,103 等等之类的,就会导致不连续的主键 id。

更遗憾的是,即使在自增初始值和步长这两个参数都设置为 1 的时候,自增主键 id 也不一定能保证主键是连续的

自增值不连续场景 2

举个例子,我们现在往表里插入一条 (null,1,1) 的记录,生成的主键是 1,AUTO_INCREMENT= 2,对吧

这时我再执行一条插入 (null,1,1) 的命令,很显然会报错 Duplicate entry,因为我们设置了一个唯一索引字段 a:

但是,你会惊奇的发现,虽然插入失败了,但自增值仍然从 2 增加到了 3!

这是为啥?

我们来分析下这个 insert 语句的执行流程:

  1. 执行器调用 InnoDB 引擎接口准备插入一行记录 (null,1,1);
  2. InnoDB 发现用户没有指定自增 id 的值,则获取表 test_pk 当前的自增值 2;
  3. 将传入的记录改成 (2,1,1);
  4. 将表的自增值改成 3;
  5. 继续执行插入数据操作,由于已经存在 a=1 的记录,所以报 Duplicate key error,语句返回

可以看到,自增值修改的这个操作,是在真正执行插入数据的操作之前。

这个语句真正执行的时候,因为碰到唯一键 a 冲突,所以 id = 2 这一行并没有插入成功,但也没有将自增值再改回去。所以,在这之后,再插入新的数据行时,拿到的自增 id 就是 3。也就是说,出现了自增主键不连续的情况。

至此,我们已经罗列了两种自增主键不连续的情况:

  1. 自增初始值和自增步长设置不为 1
  2. 唯一键冲突

除此之外,事务回滚也会导致这种情况

自增值不连续场景 3

我们现在表里有一行 (1,1,1) 的记录,AUTO_INCREMENT = 3:

我们先插入一行数据 (null, 2, 2),也就是 (3, 2, 2) 嘛,并且 AUTO_INCREMENT 变为 4:

再去执行这样一段 SQL:

虽然我们插入了一条 (null, 3, 3) 记录,但是使用 rollback 进行回滚了,所以数据库中是没有这条记录的:

在这种事务回滚的情况下,自增值并没有同样发生回滚!如下图所示,自增值仍然固执地从 4 增加到了 5:

所以这时候我们再去插入一条数据(null, 3, 3)的时候,主键 id 就会被自动赋为 5 了:

那么,为什么在出现唯一键冲突或者回滚的时候,MySQL 没有把表的自增值改回去呢?回退回去的话不就不会发生自增 id 不连续了吗?

事实上,这么做的主要原因是为了提高性能。

我们直接用反证法来验证:假设 MySQL 在事务回滚的时候会把自增值改回去,会发生什么?

现在有两个并行执行的事务 A 和 B,在申请自增值的时候,为了避免两个事务申请到相同的自增 id,肯定要加锁,然后顺序申请,对吧。

  1. 假设事务 A 申请到了 id = 1, 事务 B 申请到 id=2,那么这时候表 t 的自增值是 3,之后继续执行。
  2. 事务 B 正确提交了,但事务 A 出现了唯一键冲突,也就是 id = 1 的那行记录插入失败了,那如果允许事务 A 把自增 id 回退,也就是把表的当前自增值改回 1,那么就会出现这样的情况:表里面已经有 id = 2 的行,而当前的自增 id 值是 1。
  3. 接下来,继续执行的其他事务就会申请到 id=2。这时,就会出现插入语句报错“主键冲突”。

而为了解决这个主键冲突,有两种方法:

  1. 每次申请 id 之前,先判断表里面是否已经存在这个 id,如果存在,就跳过这个 id
  2. 把自增 id 的锁范围扩大,必须等到一个事务执行完成并提交,下一个事务才能再申请自增 id

很显然,上述两个方法的成本都比较高,会导致性能问题。而究其原因呢,是我们假设的这个 “允许自增 id 回退”。

因此,InnoDB 放弃了这个设计,语句执行失败也不回退自增 id。也正是因为这样,所以才只保证了自增 id 是递增的,但不保证是连续的。

综上,已经分析了三种自增值不连续的场景,还有第四种场景:批量插入数据。

自增值不连续场景 4

对于批量插入数据的语句,MySQL 有一个批量申请自增 id 的策略:

  1. 语句执行过程中,第一次申请自增 id,会分配 1 个;
  2. 1 个用完以后,这个语句第二次申请自增 id,会分配 2 个;
  3. 2 个用完以后,还是这个语句,第三次申请自增 id,会分配 4 个;
  4. 依此类推,同一个语句去申请自增 id,每次申请到的自增 id 个数都是上一次的两倍。

注意,这里说的批量插入数据,不是在普通的 insert 语句里面包含多个 value 值!!!,因为这类语句在申请自增 id 的时候,是可以精确计算出需要多少个 id 的,然后一次性申请,申请完成后锁就可以释放了。

而对于 insert … select、replace …… select 和 load data 这种类型的语句来说,MySQL 并不知道到底需要申请多少 id,所以就采用了这种批量申请的策略,毕竟一个一个申请的话实在太慢了。

举个例子,假设我们现在这个表有下面这些数据:

我们创建一个和当前表 test_pk 有相同结构定义的表 test_pk2:

然后使用 insert...select 往 teset_pk2 表中批量插入数据:

可以看到,成功导入了数据。

再来看下 test_pk2 的自增值是多少:

如上分析,是 8 而不是 6

具体来说,insert……select 实际上往表中插入了 5 行数据 (1 1)(2 2)(3 3)(4 4)(5 5)。但是,这五行数据是分三次申请的自增 id,结合批量申请策略,每次申请到的自增 id 个数都是上一次的两倍,所以:

  • 第一次申请到了一个 id:id=1
  • 第二次被分配了两个 id:id=2 和 id=3
  • 第三次被分配到了 4 个 id:id=4、id = 5、id = 6、id=7

由于这条语句实际只用上了 5 个 id,所以 id=6 和 id=7 就被浪费掉了。之后,再执行 insert into test_pk2 values(null,6,6),实际上插入的数据就是(8,6,6):

小结

本文总结下自增值不连续的 4 个场景:

  1. 自增初始值和自增步长设置不为 1
  2. 唯一键冲突
  3. 事务回滚
  4. 批量插入(如 insert...select 语句)

MySQL索引详解

发表于 2023-05-06 | 分类于 数据库 , MYSQL | 阅读次数:
字数统计: 9.2k 字 | 阅读时长 ≈ 33 分钟

感谢WT-AHA对本文的完善,相关 PR:https://github.com/Snailclimb/JavaGuide/pull/1648 。

但凡经历过几场面试的小伙伴,应该都清楚,数据库索引这个知识点在面试中出现的频率高到离谱。

除了对于准备面试来说非常重要之外,善用索引对 SQL 的性能提升非常明显,是一个性价比较高的 SQL 优化手段。

索引介绍

索引是一种用于快速查询和检索数据的数据结构,其本质可以看成是一种排序好的数据结构。

索引的作用就相当于书的目录。打个比方: 我们在查字典的时候,如果没有目录,那我们就只能一页一页的去找我们需要查的那个字,速度很慢。如果有目录了,我们只需要先去目录里查找字的位置,然后直接翻到那一页就行了。

索引底层数据结构存在很多种类型,常见的索引结构有: B 树, B+树 和 Hash、红黑树。在 MySQL 中,无论是 Innodb 还是 MyIsam,都使用了 B+树作为索引结构。

索引的优缺点

优点:

  • 使用索引可以大大加快数据的检索速度(大大减少检索的数据量), 减少 IO 次数,这也是创建索引的最主要的原因。
  • 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。

缺点:

  • 创建索引和维护索引需要耗费许多时间。当对表中的数据进行增删改的时候,如果数据有索引,那么索引也需要动态的修改,会降低 SQL 执行效率。
  • 索引需要使用物理文件存储,也会耗费一定空间。

但是,使用索引一定能提高查询性能吗?

大多数情况下,索引查询都是比全表扫描要快的。但是如果数据库的数据量不大,那么使用索引也不一定能够带来很大提升。

索引底层数据结构选型

Hash 表

哈希表是键值对的集合,通过键(key)即可快速取出对应的值(value),因此哈希表可以快速检索数据(接近 O(1))。

为何能够通过 key 快速取出 value 呢? 原因在于 哈希算法(也叫散列算法)。通过哈希算法,我们可以快速找到 key 对应的 index,找到了 index 也就找到了对应的 value。

1
2
hash = hashfunc(key)
index = hash % array_size

但是!哈希算法有个 Hash 冲突 问题,也就是说多个不同的 key 最后得到的 index 相同。通常情况下,我们常用的解决办法是 链地址法。链地址法就是将哈希冲突数据存放在链表中。就比如 JDK1.8 之前 HashMap 就是通过链地址法来解决哈希冲突的。不过,JDK1.8 以后HashMap为了减少链表过长的时候搜索时间过长引入了红黑树。

为了减少 Hash 冲突的发生,一个好的哈希函数应该“均匀地”将数据分布在整个可能的哈希值集合中。

MySQL 的 InnoDB 存储引擎不直接支持常规的哈希索引,但是,InnoDB 存储引擎中存在一种特殊的“自适应哈希索引”(Adaptive Hash Index),自适应哈希索引并不是传统意义上的纯哈希索引,而是结合了 B+Tree 和哈希索引的特点,以便更好地适应实际应用中的数据访问模式和性能需求。自适应哈希索引的每个哈希桶实际上是一个小型的 B+Tree 结构。这个 B+Tree 结构可以存储多个键值对,而不仅仅是一个键。这有助于减少哈希冲突链的长度,提高了索引的效率。关于 Adaptive Hash Index 的详细介绍,可以查看 MySQL 各种“Buffer”之 Adaptive Hash Index 这篇文章。

既然哈希表这么快,为什么 MySQL 没有使用其作为索引的数据结构呢? 主要是因为 Hash 索引不支持顺序和范围查询。假如我们要对表中的数据进行排序或者进行范围查询,那 Hash 索引可就不行了。并且,每次 IO 只能取一个。

试想一种情况:

1
SELECT * FROM tb1 WHERE id < 500;

在这种范围查询中,优势非常大,直接遍历比 500 小的叶子节点就够了。而 Hash 索引是根据 hash 算法来定位的,难不成还要把 1 - 499 的数据,每个都进行一次 hash 计算来定位吗?这就是 Hash 最大的缺点了。

二叉查找树(BST)

二叉查找树(Binary Search Tree)是一种基于二叉树的数据结构,它具有以下特点:

  1. 左子树所有节点的值均小于根节点的值。
  2. 右子树所有节点的值均大于根节点的值。
  3. 左右子树也分别为二叉查找树。

当二叉查找树是平衡的时候,也就是树的每个节点的左右子树深度相差不超过 1 的时候,查询的时间复杂度为 O(log2(N)),具有比较高的效率。然而,当二叉查找树不平衡时,例如在最坏情况下(有序插入节点),树会退化成线性链表(也被称为斜树),导致查询效率急剧下降,时间复杂退化为 O(N)。

斜树

也就是说,二叉查找树的性能非常依赖于它的平衡程度,这就导致其不适合作为 MySQL 底层索引的数据结构。

为了解决这个问题,并提高查询效率,人们发明了多种在二叉查找树基础上的改进型数据结构,如平衡二叉树、B-Tree、B+Tree 等。

AVL 树

AVL 树是计算机科学中最早被发明的自平衡二叉查找树,它的名称来自于发明者 G.M. Adelson-Velsky 和 E.M. Landis 的名字缩写。AVL 树的特点是保证任何节点的左右子树高度之差不超过 1,因此也被称为高度平衡二叉树,它的查找、插入和删除在平均和最坏情况下的时间复杂度都是 O(logn)。

AVL 树采用了旋转操作来保持平衡。主要有四种旋转操作:LL 旋转、RR 旋转、LR 旋转和 RL 旋转。其中 LL 旋转和 RR 旋转分别用于处理左左和右右失衡,而 LR 旋转和 RL 旋转则用于处理左右和右左失衡。

由于 AVL 树需要频繁地进行旋转操作来保持平衡,因此会有较大的计算开销进而降低了数据库写操作的性能。并且, 在使用 AVL 树时,每个树节点仅存储一个数据,而每次进行磁盘 IO 时只能读取一个节点的数据,如果需要查询的数据分布在多个节点上,那么就需要进行多次磁盘 IO。 磁盘 IO 是一项耗时的操作,在设计数据库索引时,我们需要优先考虑如何最大限度地减少磁盘 IO 操作的次数。

实际应用中,AVL 树使用的并不多。

红黑树

红黑树是一种自平衡二叉查找树,通过在插入和删除节点时进行颜色变换和旋转操作,使得树始终保持平衡状态,它具有以下特点:

  1. 每个节点非红即黑;
  2. 根节点总是黑色的;
  3. 每个叶子节点都是黑色的空节点(NIL 节点);
  4. 如果节点是红色的,则它的子节点必须是黑色的(反之不一定);
  5. 从任意节点到它的叶子节点或空子节点的每条路径,必须包含相同数目的黑色节点(即相同的黑色高度)。

红黑树

和 AVL 树不同的是,红黑树并不追求严格的平衡,而是大致的平衡。正因如此,红黑树的查询效率稍有下降,因为红黑树的平衡性相对较弱,可能会导致树的高度较高,这可能会导致一些数据需要进行多次磁盘 IO 操作才能查询到,这也是 MySQL 没有选择红黑树的主要原因。也正因如此,红黑树的插入和删除操作效率大大提高了,因为红黑树在插入和删除节点时只需进行 O(1) 次数的旋转和变色操作,即可保持基本平衡状态,而不需要像 AVL 树一样进行 O(logn) 次数的旋转操作。

红黑树的应用还是比较广泛的,TreeMap、TreeSet 以及 JDK1.8 的 HashMap 底层都用到了红黑树。对于数据在内存中的这种情况来说,红黑树的表现是非常优异的。

B 树& B+树

B 树也称 B-树,全称为 多路平衡查找树 ,B+ 树是 B 树的一种变体。B 树和 B+树中的 B 是 Balanced (平衡)的意思。

目前大部分数据库系统及文件系统都采用 B-Tree 或其变种 B+Tree 作为索引结构。

B 树& B+树两者有何异同呢?

  • B 树的所有节点既存放键(key) 也存放数据(data),而 B+树只有叶子节点存放 key 和 data,其他内节点只存放 key。
  • B 树的叶子节点都是独立的;B+树的叶子节点有一条引用链指向与它相邻的叶子节点。
  • B 树的检索的过程相当于对范围内的每个节点的关键字做二分查找,可能还没有到达叶子节点,检索就结束了。而 B+树的检索效率就很稳定了,任何查找都是从根节点到叶子节点的过程,叶子节点的顺序检索很明显。
  • 在 B 树中进行范围查询时,首先找到要查找的下限,然后对 B 树进行中序遍历,直到找到查找的上限;而 B+树的范围查询,只需要对链表进行遍历即可。

综上,B+树与 B 树相比,具备更少的 IO 次数、更稳定的查询效率和更适于范围查询这些优势。

在 MySQL 中,MyISAM 引擎和 InnoDB 引擎都是使用 B+Tree 作为索引结构,但是,两者的实现方式不太一样。(下面的内容整理自《Java 工程师修炼之道》)

MyISAM 引擎中,B+Tree 叶节点的 data 域存放的是数据记录的地址。在索引检索的时候,首先按照 B+Tree 搜索算法搜索索引,如果指定的 Key 存在,则取出其 data 域的值,然后以 data 域的值为地址读取相应的数据记录。这被称为“非聚簇索引(非聚集索引)”。

InnoDB 引擎中,其数据文件本身就是索引文件。相比 MyISAM,索引文件和数据文件是分离的,其表数据文件本身就是按 B+Tree 组织的一个索引结构,树的叶节点 data 域保存了完整的数据记录。这个索引的 key 是数据表的主键,因此 InnoDB 表数据文件本身就是主索引。这被称为“聚簇索引(聚集索引)”,而其余的索引都作为 辅助索引 ,辅助索引的 data 域存储相应记录主键的值而不是地址,这也是和 MyISAM 不同的地方。在根据主索引搜索时,直接找到 key 所在的节点即可取出数据;在根据辅助索引查找时,则需要先取出主键的值,再走一遍主索引。 因此,在设计表的时候,不建议使用过长的字段作为主键,也不建议使用非单调的字段作为主键,这样会造成主索引频繁分裂。

索引类型总结

按照数据结构维度划分:

  • BTree 索引:MySQL 里默认和最常用的索引类型。只有叶子节点存储 value,非叶子节点只有指针和 key。存储引擎 MyISAM 和 InnoDB 实现 BTree 索引都是使用 B+Tree,但二者实现方式不一样(前面已经介绍了)。
  • 哈希索引:类似键值对的形式,一次即可定位。
  • RTree 索引:一般不会使用,仅支持 geometry 数据类型,优势在于范围查找,效率较低,通常使用搜索引擎如 ElasticSearch 代替。
  • 全文索引:对文本的内容进行分词,进行搜索。目前只有 CHAR、VARCHAR ,TEXT 列上可以创建全文索引。一般不会使用,效率较低,通常使用搜索引擎如 ElasticSearch 代替。

按照底层存储方式角度划分:

  • 聚簇索引(聚集索引):索引结构和数据一起存放的索引,InnoDB 中的主键索引就属于聚簇索引。
  • 非聚簇索引(非聚集索引):索引结构和数据分开存放的索引,二级索引(辅助索引)就属于非聚簇索引。MySQL 的 MyISAM 引擎,不管主键还是非主键,使用的都是非聚簇索引。

按照应用维度划分:

  • 主键索引:加速查询 + 列值唯一(不可以有 NULL)+ 表中只有一个。
  • 普通索引:仅加速查询。
  • 唯一索引:加速查询 + 列值唯一(可以有 NULL)。
  • 覆盖索引:一个索引包含(或者说覆盖)所有需要查询的字段的值。
  • 联合索引:多列值组成一个索引,专门用于组合搜索,其效率大于索引合并。
  • 全文索引:对文本的内容进行分词,进行搜索。目前只有 CHAR、VARCHAR ,TEXT 列上可以创建全文索引。一般不会使用,效率较低,通常使用搜索引擎如 ElasticSearch 代替。
  • 前缀索引:对文本的前几个字符创建索引,相比普通索引建立的数据更小,因为只取前几个字符。

MySQL 8.x 中实现的索引新特性:

  • 隐藏索引:也称为不可见索引,不会被优化器使用,但是仍然需要维护,通常会软删除和灰度发布的场景中使用。主键不能设置为隐藏(包括显式设置或隐式设置)。
  • 降序索引:之前的版本就支持通过 desc 来指定索引为降序,但实际上创建的仍然是常规的升序索引。直到 MySQL 8.x 版本才开始真正支持降序索引。另外,在 MySQL 8.x 版本中,不再对 GROUP BY 语句进行隐式排序。
  • 函数索引:从 MySQL 8.0.13 版本开始支持在索引中使用函数或者表达式的值,也就是在索引中可以包含函数或者表达式。

主键索引(Primary Key)

数据表的主键列使用的就是主键索引。

一张数据表有只能有一个主键,并且主键不能为 null,不能重复。

在 MySQL 的 InnoDB 的表中,当没有显示的指定表的主键时,InnoDB 会自动先检查表中是否有唯一索引且不允许存在 null 值的字段,如果有,则选择该字段为默认的主键,否则 InnoDB 将会自动创建一个 6Byte 的自增主键。

主键索引

二级索引

二级索引(Secondary Index)的叶子节点存储的数据是主键的值,也就是说,通过二级索引可以定位主键的位置,二级索引又称为辅助索引/非主键索引。

唯一索引,普通索引,前缀索引等索引都属于二级索引。

PS: 不懂的同学可以暂存疑,慢慢往下看,后面会有答案的,也可以自行搜索。

  1. 唯一索引(Unique Key):唯一索引也是一种约束。唯一索引的属性列不能出现重复的数据,但是允许数据为 NULL,一张表允许创建多个唯一索引。 建立唯一索引的目的大部分时候都是为了该属性列的数据的唯一性,而不是为了查询效率。
  2. 普通索引(Index):普通索引的唯一作用就是为了快速查询数据,一张表允许创建多个普通索引,并允许数据重复和 NULL。
  3. 前缀索引(Prefix):前缀索引只适用于字符串类型的数据。前缀索引是对文本的前几个字符创建索引,相比普通索引建立的数据更小,因为只取前几个字符。
  4. 全文索引(Full Text):全文索引主要是为了检索大文本数据中的关键字的信息,是目前搜索引擎数据库使用的一种技术。Mysql5.6 之前只有 MYISAM 引擎支持全文索引,5.6 之后 InnoDB 也支持了全文索引。

二级索引:

二级索引

聚簇索引与非聚簇索引

聚簇索引(聚集索引)

聚簇索引介绍

聚簇索引(Clustered Index)即索引结构和数据一起存放的索引,并不是一种单独的索引类型。InnoDB 中的主键索引就属于聚簇索引。

在 MySQL 中,InnoDB 引擎的表的 .ibd文件就包含了该表的索引和数据,对于 InnoDB 引擎表来说,该表的索引(B+树)的每个非叶子节点存储索引,叶子节点存储索引和索引对应的数据。

聚簇索引的优缺点

优点:

  • 查询速度非常快:聚簇索引的查询速度非常的快,因为整个 B+树本身就是一颗多叉平衡树,叶子节点也都是有序的,定位到索引的节点,就相当于定位到了数据。相比于非聚簇索引, 聚簇索引少了一次读取数据的 IO 操作。
  • 对排序查找和范围查找优化:聚簇索引对于主键的排序查找和范围查找速度非常快。

缺点:

  • 依赖于有序的数据:因为 B+树是多路平衡树,如果索引的数据不是有序的,那么就需要在插入时排序,如果数据是整型还好,否则类似于字符串或 UUID 这种又长又难比较的数据,插入或查找的速度肯定比较慢。
  • 更新代价大:如果对索引列的数据被修改时,那么对应的索引也将会被修改,而且聚簇索引的叶子节点还存放着数据,修改代价肯定是较大的,所以对于主键索引来说,主键一般都是不可被修改的。

非聚簇索引(非聚集索引)

非聚簇索引介绍

非聚簇索引(Non-Clustered Index)即索引结构和数据分开存放的索引,并不是一种单独的索引类型。二级索引(辅助索引)就属于非聚簇索引。MySQL 的 MyISAM 引擎,不管主键还是非主键,使用的都是非聚簇索引。

非聚簇索引的叶子节点并不一定存放数据的指针,因为二级索引的叶子节点就存放的是主键,根据主键再回表查数据。

非聚簇索引的优缺点

优点:

更新代价比聚簇索引要小 。非聚簇索引的更新代价就没有聚簇索引那么大了,非聚簇索引的叶子节点是不存放数据的。

缺点:

  • 依赖于有序的数据:跟聚簇索引一样,非聚簇索引也依赖于有序的数据
  • 可能会二次查询(回表):这应该是非聚簇索引最大的缺点了。 当查到索引对应的指针或主键后,可能还需要根据指针或主键再到数据文件或表中查询。

这是 MySQL 的表的文件截图:

MySQL 表的文件

聚簇索引和非聚簇索引:

聚簇索引和非聚簇索引

非聚簇索引一定回表查询吗(覆盖索引)?

非聚簇索引不一定回表查询。

试想一种情况,用户准备使用 SQL 查询用户名,而用户名字段正好建立了索引。

1
SELECT name FROM table WHERE name='guang19';

那么这个索引的 key 本身就是 name,查到对应的 name 直接返回就行了,无需回表查询。

即使是 MYISAM 也是这样,虽然 MYISAM 的主键索引确实需要回表,因为它的主键索引的叶子节点存放的是指针。但是!如果 SQL 查的就是主键呢?

1
SELECT id FROM table WHERE id=1;

主键索引本身的 key 就是主键,查到返回就行了。这种情况就称之为覆盖索引了。

覆盖索引和联合索引

覆盖索引

如果一个索引包含(或者说覆盖)所有需要查询的字段的值,我们就称之为 覆盖索引(Covering Index) 。

在 InnoDB 存储引擎中,非主键索引的叶子节点包含的是主键的值。这意味着,当使用非主键索引进行查询时,数据库会先找到对应的主键值,然后再通过主键索引来定位和检索完整的行数据。这个过程被称为“回表”。

覆盖索引即需要查询的字段正好是索引的字段,那么直接根据该索引,就可以查到数据了,而无需回表查询。

如主键索引,如果一条 SQL 需要查询主键,那么正好根据主键索引就可以查到主键。再如普通索引,如果一条 SQL 需要查询 name,name 字段正好有索引,
那么直接根据这个索引就可以查到数据,也无需回表。

覆盖索引

我们这里简单演示一下覆盖索引的效果。

1、创建一个名为 cus_order 的表,来实际测试一下这种排序方式。为了测试方便, cus_order 这张表只有 id、score、name这 3 个字段。

1
2
3
4
5
6
CREATE TABLE `cus_order` (
`id` int(11) unsigned NOT NULL AUTO_INCREMENT,
`score` int(11) NOT NULL,
`name` varchar(11) NOT NULL DEFAULT '',
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=100000 DEFAULT CHARSET=utf8mb4;

2、定义一个简单的存储过程(PROCEDURE)来插入 100w 测试数据。

1
2
3
4
5
6
7
8
9
10
11
DELIMITER ;;
CREATE DEFINER=`root`@`%` PROCEDURE `BatchinsertDataToCusOder`(IN start_num INT,IN max_num INT)
BEGIN
DECLARE i INT default start_num;
WHILE i < max_num DO
insert into `cus_order`(`id`, `score`, `name`)
values (i,RAND() * 1000000,CONCAT('user', i));
SET i = i + 1;
END WHILE;
END;;
DELIMITER ;

存储过程定义完成之后,我们执行存储过程即可!

1
CALL BatchinsertDataToCusOder(1, 1000000); # 插入100w+的随机数据

等待一会,100w 的测试数据就插入完成了!

3、创建覆盖索引并使用 EXPLAIN 命令分析。

为了能够对这 100w 数据按照 score 进行排序,我们需要执行下面的 SQL 语句。

1
2
#降序排序
SELECT `score`,`name` FROM `cus_order` ORDER BY `score` DESC;

使用 EXPLAIN 命令分析这条 SQL 语句,通过 Extra 这一列的 Using filesort ,我们发现是没有用到覆盖索引的。

不过这也是理所应当,毕竟我们现在还没有创建索引呢!

我们这里以 score 和 name 两个字段建立联合索引:

1
ALTER TABLE `cus_order` ADD INDEX id_score_name(score, name);

创建完成之后,再用 EXPLAIN 命令分析再次分析这条 SQL 语句。

通过 Extra 这一列的 Using index ,说明这条 SQL 语句成功使用了覆盖索引。

关于 EXPLAIN 命令的详细介绍请看:MySQL 执行计划分析这篇文章。

联合索引

使用表中的多个字段创建索引,就是 联合索引,也叫 组合索引 或 复合索引。

以 score 和 name 两个字段建立联合索引:

1
ALTER TABLE `cus_order` ADD INDEX id_score_name(score, name);

最左前缀匹配原则

最左前缀匹配原则指的是在使用联合索引时,MySQL 会根据索引中的字段顺序,从左到右依次匹配查询条件中的字段。如果查询条件与索引中的最左侧字段相匹配,那么 MySQL 就会使用索引来过滤数据,这样可以提高查询效率。

最左匹配原则会一直向右匹配,直到遇到范围查询(如 >、<)为止。对于 >=、<=、BETWEEN 以及前缀匹配 LIKE 的范围查询,不会停止匹配(相关阅读:联合索引的最左匹配原则全网都在说的一个错误结论)。

假设有一个联合索引(column1, column2, column3),其从左到右的所有前缀为(column1)、(column1, column2)、(column1, column2, column3)(创建 1 个联合索引相当于创建了 3 个索引),包含这些列的所有查询都会走索引而不会全表扫描。

我们在使用联合索引时,可以将区分度高的字段放在最左边,这也可以过滤更多数据。

我们这里简单演示一下最左前缀匹配的效果。

1、创建一个名为 student 的表,这张表只有 id、name、class这 3 个字段。

1
2
3
4
5
6
7
CREATE TABLE `student` (
`id` int NOT NULL,
`name` varchar(100) DEFAULT NULL,
`class` varchar(100) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `name_class_idx` (`name`,`class`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

2、下面我们分别测试三条不同的 SQL 语句。

1
2
3
4
5
# 可以命中索引
SELECT * FROM student WHERE name = 'Anne Henry';
EXPLAIN SELECT * FROM student WHERE name = 'Anne Henry' AND class = 'lIrm08RYVk';
# 无法命中索引
SELECT * FROM student WHERE class = 'lIrm08RYVk';

再来看一个常见的面试题:如果有索引 联合索引(a,b,c),查询 a=1 AND c=1会走索引么?c=1 呢?b=1 AND c=1呢?

先不要往下看答案,给自己 3 分钟时间想一想。

  1. 查询 a=1 AND c=1:根据最左前缀匹配原则,查询可以使用索引的前缀部分。因此,该查询仅在 a=1 上使用索引,然后对结果进行 c=1 的过滤。
  2. 查询 c=1 :由于查询中不包含最左列 a,根据最左前缀匹配原则,整个索引都无法被使用。
  3. 查询b=1 AND c=1:和第二种一样的情况,整个索引都不会使用。

MySQL 8.0.13 版本引入了索引跳跃扫描(Index Skip Scan,简称 ISS),它可以在某些索引查询场景下提高查询效率。在没有 ISS 之前,不满足最左前缀匹配原则的联合索引查询中会执行全表扫描。而 ISS 允许 MySQL 在某些情况下避免全表扫描,即使查询条件不符合最左前缀。不过,这个功能比较鸡肋, 和 Oracle 中的没法比,MySQL 8.0.31 还报告了一个 bug:Bug #109145 Using index for skip scan cause incorrect result(后续版本已经修复)。个人建议知道有这个东西就好,不需要深究,实际项目也不一定能用上。

索引下推

索引下推(Index Condition Pushdown,简称 ICP) 是 MySQL 5.6 版本中提供的一项索引优化功能,它允许存储引擎在索引遍历过程中,执行部分 WHERE字句的判断条件,直接过滤掉不满足条件的记录,从而减少回表次数,提高查询效率。

假设我们有一个名为 user 的表,其中包含 id, username, zipcode和 birthdate 4 个字段,创建了联合索引(zipcode, birthdate)。

1
2
3
4
5
6
7
8
9
10
11
CREATE TABLE `user` (
`id` int NOT NULL AUTO_INCREMENT,
`username` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT NULL,
`zipcode` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT NULL,
`birthdate` date NOT NULL,
PRIMARY KEY (`id`),
KEY `idx_username_birthdate` (`zipcode`,`birthdate`) ) ENGINE=InnoDB AUTO_INCREMENT=1001 DEFAULT CHARSET=utf8mb4;

# 查询 zipcode 为 431200 且生日在 3 月的用户
# birthdate 字段使用函数索引失效
SELECT * FROM user WHERE zipcode = '431200' AND MONTH(birthdate) = 3;
  • 没有索引下推之前,即使 zipcode 字段利用索引可以帮助我们快速定位到 zipcode = '431200' 的用户,但我们仍然需要对每一个找到的用户进行回表操作,获取完整的用户数据,再去判断 MONTH(birthdate) = 3。
  • 有了索引下推之后,存储引擎会在使用zipcode 字段索引查找zipcode = '431200' 的用户时,同时判断MONTH(birthdate) = 3。这样,只有同时满足条件的记录才会被返回,减少了回表次数。

再来讲讲索引下推的具体原理,先看下面这张 MySQL 简要架构图。

MySQL 可以简单分为 Server 层和存储引擎层这两层。Server 层处理查询解析、分析、优化、缓存以及与客户端的交互等操作,而存储引擎层负责数据的存储和读取,MySQL 支持 InnoDB、MyISAM、Memory 等多种存储引擎。

索引下推的下推其实就是指将部分上层(Server 层)负责的事情,交给了下层(存储引擎层)去处理。

我们这里结合索引下推原理再对上面提到的例子进行解释。

没有索引下推之前:

  • 存储引擎层先根据 zipcode 索引字段找到所有 zipcode = '431200' 的用户的主键 ID,然后二次回表查询,获取完整的用户数据;
  • 存储引擎层把所有 zipcode = '431200' 的用户数据全部交给 Server 层,Server 层根据MONTH(birthdate) = 3这一条件再进一步做筛选。

有了索引下推之后:

  • 存储引擎层先根据 zipcode 索引字段找到所有 zipcode = '431200' 的用户,然后直接判断 MONTH(birthdate) = 3,筛选出符合条件的主键 ID;
  • 二次回表查询,根据符合条件的主键 ID 去获取完整的用户数据;
  • 存储引擎层把符合条件的用户数据全部交给 Server 层。

可以看出,除了可以减少回表次数之外,索引下推还可以减少存储引擎层和 Server 层的数据传输量。

最后,总结一下索引下推应用范围:

  1. 适用于 InnoDB 引擎和 MyISAM 引擎的查询。
  2. 适用于执行计划是 range, ref, eq_ref, ref_or_null 的范围查询。
  3. 对于 InnoDB 表,仅用于非聚簇索引。索引下推的目标是减少全行读取次数,从而减少 I/O 操作。对于 InnoDB 聚集索引,完整的记录已经读入 InnoDB 缓冲区。在这种情况下使用索引下推 不会减少 I/O。
  4. 子查询不能使用索引下推,因为子查询通常会创建临时表来处理结果,而这些临时表是没有索引的。
  5. 存储过程不能使用索引下推,因为存储引擎无法调用存储函数。

正确使用索引的一些建议

选择合适的字段创建索引

  • 不为 NULL 的字段:索引字段的数据应该尽量不为 NULL,因为对于数据为 NULL 的字段,数据库较难优化。如果字段频繁被查询,但又避免不了为 NULL,建议使用 0,1,true,false 这样语义较为清晰的短值或短字符作为替代。
  • 被频繁查询的字段:我们创建索引的字段应该是查询操作非常频繁的字段。
  • 被作为条件查询的字段:被作为 WHERE 条件查询的字段,应该被考虑建立索引。
  • 频繁需要排序的字段:索引已经排序,这样查询可以利用索引的排序,加快排序查询时间。
  • 被经常频繁用于连接的字段:经常用于连接的字段可能是一些外键列,对于外键列并不一定要建立外键,只是说该列涉及到表与表的关系。对于频繁被连接查询的字段,可以考虑建立索引,提高多表连接查询的效率。

被频繁更新的字段应该慎重建立索引

虽然索引能带来查询上的效率,但是维护索引的成本也是不小的。 如果一个字段不被经常查询,反而被经常修改,那么就更不应该在这种字段上建立索引了。

限制每张表上的索引数量

索引并不是越多越好,建议单张表索引不超过 5 个!索引可以提高效率同样可以降低效率。

索引可以增加查询效率,但同样也会降低插入和更新的效率,甚至有些情况下会降低查询效率。

因为 MySQL 优化器在选择如何优化查询时,会根据统一信息,对每一个可以用到的索引来进行评估,以生成出一个最好的执行计划,如果同时有很多个索引都可以用于查询,就会增加 MySQL 优化器生成执行计划的时间,同样会降低查询性能。

尽可能的考虑建立联合索引而不是单列索引

因为索引是需要占用磁盘空间的,可以简单理解为每个索引都对应着一颗 B+树。如果一个表的字段过多,索引过多,那么当这个表的数据达到一个体量后,索引占用的空间也是很多的,且修改索引时,耗费的时间也是较多的。如果是联合索引,多个字段在一个索引上,那么将会节约很大磁盘空间,且修改数据的操作效率也会提升。

注意避免冗余索引

冗余索引指的是索引的功能相同,能够命中索引(a, b)就肯定能命中索引(a) ,那么索引(a)就是冗余索引。如(name,city )和(name )这两个索引就是冗余索引,能够命中前者的查询肯定是能够命中后者的 在大多数情况下,都应该尽量扩展已有的索引而不是创建新索引。

字符串类型的字段使用前缀索引代替普通索引

前缀索引仅限于字符串类型,较普通索引会占用更小的空间,所以可以考虑使用前缀索引带替普通索引。

避免索引失效

索引失效也是慢查询的主要原因之一,常见的导致索引失效的情况有下面这些:

  • 使用 SELECT * 进行查询; SELECT * 不会直接导致索引失效(如果不走索引大概率是因为 where 查询范围过大导致的),但它可能会带来一些其他的性能问题比如造成网络传输和数据处理的浪费、无法使用索引覆盖;
  • 创建了组合索引,但查询条件未遵守最左匹配原则;
  • 在索引列上进行计算、函数、类型转换等操作;
  • 以 % 开头的 LIKE 查询比如 LIKE '%abc';;
  • 查询条件中使用 OR,且 OR 的前后条件中有一个列没有索引,涉及的索引都不会被使用到;
  • IN 的取值范围较大时会导致索引失效,走全表扫描(NOT IN 和 IN 的失效场景相同);
  • 发生隐式转换;
  • ……

推荐阅读这篇文章:美团暑期实习一面:MySQl 索引失效的场景有哪些?。

删除长期未使用的索引

删除长期未使用的索引,不用的索引的存在会造成不必要的性能损耗。

MySQL 5.7 可以通过查询 sys 库的 schema_unused_indexes 视图来查询哪些索引从未被使用。

知道如何分析 SQL 语句是否走索引查询

我们可以使用 EXPLAIN 命令来分析 SQL 的 执行计划 ,这样就知道语句是否命中索引了。执行计划是指一条 SQL 语句在经过 MySQL 查询优化器的优化会后,具体的执行方式。

EXPLAIN 并不会真的去执行相关的语句,而是通过 查询优化器 对语句进行分析,找出最优的查询方案,并显示对应的信息。

EXPLAIN 的输出格式如下:

1
2
3
4
5
6
7
mysql> EXPLAIN SELECT `score`,`name` FROM `cus_order` ORDER BY `score` DESC;
+----+-------------+-----------+------------+------+---------------+------+---------+------+--------+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-----------+------------+------+---------------+------+---------+------+--------+----------+----------------+
| 1 | SIMPLE | cus_order | NULL | ALL | NULL | NULL | NULL | NULL | 997572 | 100.00 | Using filesort |
+----+-------------+-----------+------------+------+---------------+------+---------+------+--------+----------+----------------+
1 row in set, 1 warning (0.00 sec)

各个字段的含义如下:

列名 含义
id SELECT 查询的序列标识符
select_type SELECT 关键字对应的查询类型
table 用到的表名
partitions 匹配的分区,对于未分区的表,值为 NULL
type 表的访问方法
possible_keys 可能用到的索引
key 实际用到的索引
key_len 所选索引的长度
ref 当使用索引等值查询时,与索引作比较的列或常量
rows 预计要读取的行数
filtered 按表条件过滤后,留存的记录数的百分比
Extra 附加信息

篇幅问题,我这里只是简单介绍了一下 MySQL 执行计划,详细介绍请看:MySQL 执行计划分析这篇文章。

SpringBoot常见面试题总结(付费)

发表于 2023-05-06 | 分类于 Java , 框架 , spring | 阅读次数:
字数统计: 49 字 | 阅读时长 ≈ 1 分钟

Spring Boot 相关的面试题为我的知识星球(点击链接即可查看详细介绍以及加入方法)专属内容,已经整理到了《Java 面试指北》中。

Redis为什么用跳表实现有序集合

发表于 2023-05-03 | 分类于 分布式 , redis | 阅读次数:
字数统计: 7.6k 字 | 阅读时长 ≈ 31 分钟

前言

近几年针对 Redis 面试时会涉及常见数据结构的底层设计,其中就有这么一道比较有意思的面试题:“Redis 的有序集合底层为什么要用跳表,而不用平衡树、红黑树或者 B+树?”。

本文就以这道大厂常问的面试题为切入点,带大家详细了解一下跳表这个数据结构。

本文整体脉络如下图所示,笔者会从有序集合的基本使用到跳表的源码分析和实现,让你会对 Redis 的有序集合底层实现的跳表有着更深刻的理解和掌握。

跳表在 Redis 中的运用

这里我们需要先了解一下 Redis 用到跳表的数据结构有序集合的使用,Redis 有个比较常用的数据结构叫**有序集合(sorted set,简称 zset)**,正如其名它是一个可以保证有序且元素唯一的集合,所以它经常用于排行榜等需要进行统计排列的场景。

这里我们通过命令行的形式演示一下排行榜的实现,可以看到笔者分别输入 3 名用户:xiaoming、xiaohong、xiaowang,它们的score分别是 60、80、60,最终按照成绩升级降序排列。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

127.0.0.1:6379> zadd rankList 60 xiaoming
(integer) 1
127.0.0.1:6379> zadd rankList 80 xiaohong
(integer) 1
127.0.0.1:6379> zadd rankList 60 xiaowang
(integer) 1

# 返回有序集中指定区间内的成员,通过索引,分数从高到低
127.0.0.1:6379> ZREVRANGE rankList 0 100 WITHSCORES
1) "xiaohong"
2) "80"
3) "xiaowang"
4) "60"
5) "xiaoming"
6) "60"

此时我们通过 object 指令查看 zset 的数据结构,可以看到当前有序集合存储的还是**ziplist(压缩列表)**。

1
2
127.0.0.1:6379> object encoding rankList
"ziplist"

因为设计者考虑到 Redis 数据存放于内存,为了节约宝贵的内存空间,在有序集合元素小于 64 字节且个数小于 128 的时候,会使用 ziplist,而这个阈值的默认值的设置就来自下面这两个配置项。

1
2
zset-max-ziplist-value 64
zset-max-ziplist-entries 128

一旦有序集合中的某个元素超出这两个其中的一个阈值它就会转为 skiplist(实际是 dict+skiplist,还会借用字典来提高获取指定元素的效率)。

我们不妨在添加一个大于 64 字节的元素,可以看到有序集合的底层存储转为 skiplist。

1
2
3
4
5
6
127.0.0.1:6379> zadd rankList 90 yigemingzihuichaoguo64zijiedeyonghumingchengyongyuceshitiaobiaodeshijiyunyong
(integer) 1

# 超过阈值,转为跳表
127.0.0.1:6379> object encoding rankList
"skiplist"

也就是说,ZSet 有两种不同的实现,分别是 ziplist 和 skiplist,具体使用哪种结构进行存储的规则如下:

  • 当有序集合对象同时满足以下两个条件时,使用 ziplist:
    1. ZSet 保存的键值对数量少于 128 个;
    2. 每个元素的长度小于 64 字节。
  • 如果不满足上述两个条件,那么使用 skiplist 。

手写一个跳表

为了更好的回答上述问题以及更好的理解和掌握跳表,这里可以通过手写一个简单的跳表的形式来帮助读者理解跳表这个数据结构。

我们都知道有序链表在添加、查询、删除的平均时间复杂都都是 O(n) 即线性增长,所以一旦节点数量达到一定体量后其性能表现就会非常差劲。而跳表我们完全可以理解为在原始链表基础上,建立多级索引,通过多级索引检索定位将增删改查的时间复杂度变为 O(log n) 。

可能这里说的有些抽象,我们举个例子,以下图跳表为例,其原始链表存储按序存储 1-10,有 2 级索引,每级索引的索引个数都是基于下层元素个数的一半。

假如我们需要查询元素 6,其工作流程如下:

  1. 从 2 级索引开始,先来到节点 4。
  2. 查看 4 的后继节点,是 8 的 2 级索引,这个值大于 6,说明 2 级索引后续的索引都是大于 6 的,没有再往后搜寻的必要,我们索引向下查找。
  3. 来到 4 的 1 级索引,比对其后继节点为 6,查找结束。

相较于原始有序链表需要 6 次,我们的跳表通过建立多级索引,我们只需两次就直接定位到了目标元素,其查寻的复杂度被直接优化为**O(log n)**。

对应的添加也是一个道理,假如我们需要在这个有序集合中添加一个元素 7,那么我们就需要通过跳表找到小于元素 7 的最大值,也就是下图元素 6 的位置,将其插入到元素 6 的后面,让元素 6 的索引指向新插入的节点 7,其工作流程如下:

  1. 从 2 级索引开始定位到了元素 4 的索引。
  2. 查看索引 4 的后继索引为 8,索引向下推进。
  3. 来到 1 级索引,发现索引 4 后继索引为 6,小于插入元素 7,指针推进到索引 6 位置。
  4. 继续比较 6 的后继节点为索引 8,大于元素 7,索引继续向下。
  5. 最终我们来到 6 的原始节点,发现其后继节点为 7,指针没有继续向下的空间,自此我们可知元素 6 就是小于插入元素 7 的最大值,于是便将元素 7 插入。

这里我们又面临一个问题,我们是否需要为元素 7 建立索引,索引多高合适?

我们上文提到,理想情况是每一层索引是下一层元素个数的二分之一,假设我们的总共有 16 个元素,对应各级索引元素个数应该是:

1
2
3
1. 一级索引:16/2=8
2. 二级索引:8/2 =4
3. 三级索引:4/2=2

由此我们用数学归纳法可知:

1
2
3
1. 一级索引:16/2=16/2^1=8
2. 二级索引:8/2 => 16/2^2 =4
3. 三级索引:4/2=>16/2^3=2

假设元素个数为 n,那么对应 k 层索引的元素个数 r 计算公式为:

1
r=n/2^k

同理我们再来推断以下索引的最大高度,一般来说最高级索引的元素个数为 2,我们设元素总个数为 n,索引高度为 h,代入上述公式可得:

1
2
3
4
5
2= n/2^h
=> 2*2^h=n
=> 2^(h+1)=n
=> h+1=log2^n
=> h=log2^n -1

而 Redis 又是内存数据库,我们假设元素最大个数是65536,我们把65536代入上述公式可知最大高度为 16。所以我们建议添加一个元素后为其建立的索引高度不超过 16。

因为我们要求尽可能保证每一个上级索引都是下级索引的一半,在实现高度生成算法时,我们可以这样设计:

  1. 跳表的高度计算从原始链表开始,即默认情况下插入的元素的高度为 1,代表没有索引,只有元素节点。
  2. 设计一个为插入元素生成节点索引高度 level 的方法。
  3. 进行一次随机运算,随机数值范围为 0-1 之间。
  4. 如果随机数大于 0.5 则为当前元素添加一级索引,自此我们保证生成一级索引的概率为 50% ,这也就保证了 1 级索引理想情况下只有一半的元素会生成索引。
  5. 同理后续每次随机算法得到的值大于 0.5 时,我们的索引高度就加 1,这样就可以保证节点生成的 2 级索引概率为 25% ,3 级索引为 12.5% ……

我们回过头,上述插入 7 之后,我们通过随机算法得到 2,即要为其建立 1 级索引:

最后我们再来说说删除,假设我们这里要删除元素 10,我们必须定位到当前跳表各层元素小于 10 的最大值,索引执行步骤为:

  1. 2 级索引 4 的后继节点为 8,指针推进。
  2. 索引 8 无后继节点,该层无要删除的元素,指针直接向下。
  3. 1 级索引 8 后继节点为 10,说明 1 级索引 8 在进行删除时需要将自己的指针和 1 级索引 10 断开联系,将 10 删除。
  4. 1 级索引完成定位后,指针向下,后继节点为 9,指针推进。
  5. 9 的后继节点为 10,同理需要让其指向 null,将 10 删除。

模板定义

有了整体的思路之后,我们可以开始实现一个跳表了,首先定义一下跳表中的节点Node,从上文的演示中可以看出每一个Node它都包含以下几个元素:

  1. 存储的value值。
  2. 后继节点的地址。
  3. 多级索引。

为了更方便统一管理Node后继节点地址和多级索引指向的元素地址,笔者在Node中设置了一个forwards数组,用于记录原始链表节点的后继节点和多级索引的后继节点指向。

以下图为例,我们forwards数组长度为 5,其中索引 0记录的是原始链表节点的后继节点地址,而其余自底向上表示从 1 级索引到 4 级索引的后继节点指向。

于是我们的就有了这样一个代码定义,可以看出笔者对于数组的长度设置为固定的 16**(上文的推算最大高度建议是 16),默认data为-1,节点最大高度maxLevel初始化为 1,注意这个maxLevel**的值代表原始链表加上索引的总高度。

1
2
3
4
5
6
7
8
9
10
11
/**
* 跳表索引最大高度为16
*/
private static final int MAX_LEVEL = 16;

class Node {
private int data = -1;
private Node[] forwards = new Node[MAX_LEVEL];
private int maxLevel = 0;

}

元素添加

定义好节点之后,我们先实现以下元素的添加,添加元素时首先自然是设置data这一步我们直接根据将传入的value设置到data上即可。

然后就是高度maxLevel的设置 ,我们在上文也已经给出了思路,默认高度为 1,即只有一个原始链表节点,通过随机算法每次大于 0.5 索引高度加 1,由此我们得出高度计算的算法randomLevel():

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/**
* 理论来讲,一级索引中元素个数应该占原始数据的 50%,二级索引中元素个数占 25%,三级索引12.5% ,一直到最顶层。
* 因为这里每一层的晋升概率是 50%。对于每一个新插入的节点,都需要调用 randomLevel 生成一个合理的层数。
* 该 randomLevel 方法会随机生成 1~MAX_LEVEL 之间的数,且 :
* 50%的概率返回 1
* 25%的概率返回 2
* 12.5%的概率返回 3 ...
* @return
*/
private int randomLevel() {
int level = 1;
while (Math.random() > PROB && level < MAX_LEVEL) {
++level;
}
return level;
}

然后再设置当前要插入的Node和Node索引的后继节点地址,这一步稍微复杂一点,我们假设当前节点的高度为 4,即 1 个节点加 3 个索引,所以我们创建一个长度为 4 的数组maxOfMinArr ,遍历各级索引节点中小于当前value的最大值。

假设我们要插入的value为 5,我们的数组查找结果当前节点的前驱节点和 1 级索引、2 级索引的前驱节点都为 4,三级索引为空。

然后我们基于这个数组maxOfMinArr 定位到各级的后继节点,让插入的元素 5 指向这些后继节点,而maxOfMinArr指向 5,结果如下图:

转化成代码就是下面这个形式,是不是很简单呢?我们继续:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/**
* 默认情况下的高度为1,即只有自己一个节点
*/
private int levelCount = 1;

/**
* 跳表最底层的节点,即头节点
*/
private Node h = new Node();

public void add(int value) {

//随机生成高度
int level = randomLevel();

Node newNode = new Node();
newNode.data = value;
newNode.maxLevel = level;

//创建一个node数组,用于记录小于当前value的最大值
Node[] maxOfMinArr = new Node[level];
//默认情况下指向头节点
for (int i = 0; i < level; i++) {
maxOfMinArr[i] = h;
}

//基于上述结果拿到当前节点的后继节点
Node p = h;
for (int i = level - 1; i >= 0; i--) {
while (p.forwards[i] != null && p.forwards[i].data < value) {
p = p.forwards[i];
}
maxOfMinArr[i] = p;
}

//更新前驱节点的后继节点为当前节点newNode
for (int i = 0; i < level; i++) {
newNode.forwards[i] = maxOfMinArr[i].forwards[i];
maxOfMinArr[i].forwards[i] = newNode;
}

//如果当前newNode高度大于跳表最高高度则更新levelCount
if (levelCount < level) {
levelCount = level;
}

}

元素查询

查询逻辑比较简单,从跳表最高级的索引开始定位找到小于要查的 value 的最大值,以下图为例,我们希望查找到节点 8:

  1. 跳表的 3 级索引首先找找到 5 的索引,5 的 3 级索引 forwards[3] 指向空,索引直接向下。
  2. 来到 5 的 2 级索引,其后继 forwards[2] 指向 8,继续向下。
  3. 5 的 1 级索引 forwards[1] 指向索引 6,继续向前。
  4. 索引 6 的 forwards[1] 指向索引 8,继续向下。
  5. 我们在原始节点向前找到节点 7。
  6. 节点 7 后续就是节点 8,继续向前为节点 8,无法继续向下,结束搜寻。
  7. 判断 7 的前驱,等于 8,查找结束。

所以我们的代码实现也很上述步骤差不多,从最高级索引开始向前查找,如果不为空且小于要查找的值,则继续向前搜寻,遇到不小于的节点则继续向下,如此往复,直到得到当前跳表中小于查找值的最大节点,查看其前驱是否等于要查找的值:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public Node get(int value) {
Node p = h;
//找到小于value的最大值
for (int i = levelCount - 1; i >= 0; i--) {
while (p.forwards[i] != null && p.forwards[i].data < value) {
p = p.forwards[i];
}
}
//如果p的前驱节点等于value则直接返回
if (p.forwards[0] != null && p.forwards[0].data == value) {
return p.forwards[0];
}

return null;
}

元素删除

最后是删除逻辑,需要查找各层级小于要删除节点的最大值,假设我们要删除 10:

  1. 3 级索引得到小于 10 的最大值为 5,继续向下。
  2. 2 级索引从索引 5 开始查找,发现小于 10 的最大值为 8,继续向下。
  3. 同理 1 级索引得到 8,继续向下。
  4. 原始节点找到 9。
  5. 从最高级索引开始,查看每个小于 10 的节点后继节点是否为 10,如果等于 10,则让这个节点指向 10 的后继节点,将节点 10 及其索引交由 GC 回收。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/**
* 删除
*
* @param value
*/
public void delete(int value) {
Node p = h;
//找到各级节点小于value的最大值
Node[] updateArr = new Node[levelCount];
for (int i = levelCount - 1; i >= 0; i--) {
while (p.forwards[i] != null && p.forwards[i].data < value) {
p = p.forwards[i];
}
updateArr[i] = p;
}
//查看原始层节点前驱是否等于value,若等于则说明存在要删除的值
if (p.forwards[0] != null && p.forwards[0].data == value) {
//从最高级索引开始查看其前驱是否等于value,若等于则将当前节点指向value节点的后继节点
for (int i = levelCount - 1; i >= 0; i--) {
if (updateArr[i].forwards[i] != null && updateArr[i].forwards[i].data == value) {
updateArr[i].forwards[i] = updateArr[i].forwards[i].forwards[i];
}
}
}

//从最高级开始查看是否有一级索引为空,若为空则层级减1
while (levelCount > 1 && h.forwards[levelCount - 1] == null) {
levelCount--;
}

}

完整代码以及测试

完整代码如下,读者可自行参阅:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
public class SkipList {

/**
* 跳表索引最大高度为16
*/
private static final int MAX_LEVEL = 16;

/**
* 每个节点添加一层索引高度的概率为二分之一
*/
private static final float PROB = 0.5 f;

/**
* 默认情况下的高度为1,即只有自己一个节点
*/
private int levelCount = 1;

/**
* 跳表最底层的节点,即头节点
*/
private Node h = new Node();

public SkipList() {}

public class Node {
private int data = -1;
/**
*
*/
private Node[] forwards = new Node[MAX_LEVEL];
private int maxLevel = 0;

@Override
public String toString() {
return "Node{" +
"data=" + data +
", maxLevel=" + maxLevel +
'}';
}
}

public void add(int value) {

//随机生成高度
int level = randomLevel();

Node newNode = new Node();
newNode.data = value;
newNode.maxLevel = level;

//创建一个node数组,用于记录小于当前value的最大值
Node[] maxOfMinArr = new Node[level];
//默认情况下指向头节点
for (int i = 0; i < level; i++) {
maxOfMinArr[i] = h;
}

//基于上述结果拿到当前节点的后继节点
Node p = h;
for (int i = level - 1; i >= 0; i--) {
while (p.forwards[i] != null && p.forwards[i].data < value) {
p = p.forwards[i];
}
maxOfMinArr[i] = p;
}

//更新前驱节点的后继节点为当前节点newNode
for (int i = 0; i < level; i++) {
newNode.forwards[i] = maxOfMinArr[i].forwards[i];
maxOfMinArr[i].forwards[i] = newNode;
}

//如果当前newNode高度大于跳表最高高度则更新levelCount
if (levelCount < level) {
levelCount = level;
}

}

/**
* 理论来讲,一级索引中元素个数应该占原始数据的 50%,二级索引中元素个数占 25%,三级索引12.5% ,一直到最顶层。
* 因为这里每一层的晋升概率是 50%。对于每一个新插入的节点,都需要调用 randomLevel 生成一个合理的层数。
* 该 randomLevel 方法会随机生成 1~MAX_LEVEL 之间的数,且 :
* 50%的概率返回 1
* 25%的概率返回 2
* 12.5%的概率返回 3 ...
* @return
*/
private int randomLevel() {
int level = 1;
while (Math.random() > PROB && level < MAX_LEVEL) {
++level;
}
return level;
}

public Node get(int value) {
Node p = h;
//找到小于value的最大值
for (int i = levelCount - 1; i >= 0; i--) {
while (p.forwards[i] != null && p.forwards[i].data < value) {
p = p.forwards[i];
}
}
//如果p的前驱节点等于value则直接返回
if (p.forwards[0] != null && p.forwards[0].data == value) {
return p.forwards[0];
}

return null;
}

/**
* 删除
*
* @param value
*/
public void delete(int value) {
Node p = h;
//找到各级节点小于value的最大值
Node[] updateArr = new Node[levelCount];
for (int i = levelCount - 1; i >= 0; i--) {
while (p.forwards[i] != null && p.forwards[i].data < value) {
p = p.forwards[i];
}
updateArr[i] = p;
}
//查看原始层节点前驱是否等于value,若等于则说明存在要删除的值
if (p.forwards[0] != null && p.forwards[0].data == value) {
//从最高级索引开始查看其前驱是否等于value,若等于则将当前节点指向value节点的后继节点
for (int i = levelCount - 1; i >= 0; i--) {
if (updateArr[i].forwards[i] != null && updateArr[i].forwards[i].data == value) {
updateArr[i].forwards[i] = updateArr[i].forwards[i].forwards[i];
}
}
}

//从最高级开始查看是否有一级索引为空,若为空则层级减1
while (levelCount > 1 && h.forwards[levelCount - 1] == null) {
levelCount--;
}

}

public void printAll() {
Node p = h;
//基于最底层的非索引层进行遍历,只要后继节点不为空,则速速出当前节点,并移动到后继节点
while (p.forwards[0] != null) {
System.out.println(p.forwards[0]);
p = p.forwards[0];
}

}

}

对应测试代码和输出结果如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public static void main(String[] args) {
SkipList skipList = new SkipList();
for (int i = 0; i < 24; i++) {
skipList.add(i);
}

System.out.println("**********输出添加结果**********");
skipList.printAll();

SkipList.Node node = skipList.get(22);
System.out.println("**********查询结果:" + node+" **********");

skipList.delete(22);
System.out.println("**********删除结果**********");
skipList.printAll();


}

输出结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
**********输出添加结果**********
Node{data=0, maxLevel=2}
Node{data=1, maxLevel=3}
Node{data=2, maxLevel=1}
Node{data=3, maxLevel=1}
Node{data=4, maxLevel=2}
Node{data=5, maxLevel=2}
Node{data=6, maxLevel=2}
Node{data=7, maxLevel=2}
Node{data=8, maxLevel=4}
Node{data=9, maxLevel=1}
Node{data=10, maxLevel=1}
Node{data=11, maxLevel=1}
Node{data=12, maxLevel=1}
Node{data=13, maxLevel=1}
Node{data=14, maxLevel=1}
Node{data=15, maxLevel=3}
Node{data=16, maxLevel=4}
Node{data=17, maxLevel=2}
Node{data=18, maxLevel=1}
Node{data=19, maxLevel=1}
Node{data=20, maxLevel=1}
Node{data=21, maxLevel=3}
Node{data=22, maxLevel=1}
Node{data=23, maxLevel=1}
**********查询结果:Node{data=22, maxLevel=1} **********
**********删除结果**********
Node{data=0, maxLevel=2}
Node{data=1, maxLevel=3}
Node{data=2, maxLevel=1}
Node{data=3, maxLevel=1}
Node{data=4, maxLevel=2}
Node{data=5, maxLevel=2}
Node{data=6, maxLevel=2}
Node{data=7, maxLevel=2}
Node{data=8, maxLevel=4}
Node{data=9, maxLevel=1}
Node{data=10, maxLevel=1}
Node{data=11, maxLevel=1}
Node{data=12, maxLevel=1}
Node{data=13, maxLevel=1}
Node{data=14, maxLevel=1}
Node{data=15, maxLevel=3}
Node{data=16, maxLevel=4}
Node{data=17, maxLevel=2}
Node{data=18, maxLevel=1}
Node{data=19, maxLevel=1}
Node{data=20, maxLevel=1}
Node{data=21, maxLevel=3}
Node{data=23, maxLevel=1}

Redis 跳表的特点:

  1. 采用双向链表,不同于上面的示例,存在一个回退指针。主要用于简化操作,例如删除某个元素时,还需要找到该元素的前驱节点,使用回退指针会非常方便。
  2. score 值可以重复,如果 score 值一样,则按照 ele(节点存储的值,为 sds)字典排序
  3. Redis 跳跃表默认允许最大的层数是 32,被源码中 ZSKIPLIST_MAXLEVEL 定义。

和其余三种数据结构的比较

最后,我们再来回答一下文章开头的那道面试题: “Redis 的有序集合底层为什么要用跳表,而不用平衡树、红黑树或者 B+树?”。

平衡树 vs 跳表

先来说说它和平衡树的比较,平衡树我们又会称之为 AVL 树,是一个严格的平衡二叉树,平衡条件必须满足(所有节点的左右子树高度差不超过 1,即平衡因子为范围为 [-1,1])。平衡树的插入、删除和查询的时间复杂度和跳表一样都是 O(log n) 。

对于范围查询来说,它也可以通过中序遍历的方式达到和跳表一样的效果。但是它的每一次插入或者删除操作都需要保证整颗树左右节点的绝对平衡,只要不平衡就要通过旋转操作来保持平衡,这个过程是比较耗时的。

跳表诞生的初衷就是为了克服平衡树的一些缺点,跳表的发明者在论文《Skip lists: a probabilistic alternative to balanced trees》中有详细提到:

Skip lists are a data structure that can be used in place of balanced trees. Skip lists use probabilistic balancing rather than strictly enforced balancing and as a result the algorithms for insertion and deletion in skip lists are much simpler and significantly faster than equivalent algorithms for balanced trees.

跳表是一种可以用来代替平衡树的数据结构。跳表使用概率平衡而不是严格强制的平衡,因此,跳表中的插入和删除算法比平衡树的等效算法简单得多,速度也快得多。

笔者这里也贴出了 AVL 树插入操作的核心代码,可以看出每一次添加操作都需要进行一次递归定位插入位置,然后还需要根据回溯到根节点检查沿途的各层节点是否失衡,再通过旋转节点的方式进行调整。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
// 向二分搜索树中添加新的元素(key, value)
public void add(K key, V value) {
root = add(root, key, value);
}

// 向以node为根的二分搜索树中插入元素(key, value),递归算法
// 返回插入新节点后二分搜索树的根
private Node add(Node node, K key, V value) {

if (node == null) {
size++;
return new Node(key, value);
}

if (key.compareTo(node.key) < 0)
node.left = add(node.left, key, value);
else if (key.compareTo(node.key) > 0)
node.right = add(node.right, key, value);
else // key.compareTo(node.key) == 0
node.value = value;

node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));

int balanceFactor = getBalanceFactor(node);

// LL型需要右旋
if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0) {
return rightRotate(node);
}

//RR型失衡需要左旋
if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0) {
return leftRotate(node);
}

//LR需要先左旋成LL型,然后再右旋
if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
node.left = leftRotate(node.left);
return rightRotate(node);
}

//RL
if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
node.right = rightRotate(node.right);
return leftRotate(node);
}
return node;
}

红黑树 vs 跳表

红黑树(Red Black Tree)也是一种自平衡二叉查找树,它的查询性能略微逊色于 AVL 树,但插入和删除效率更高。红黑树的插入、删除和查询的时间复杂度和跳表一样都是 O(log n) 。

红黑树是一个黑平衡树,即从任意节点到另外一个叶子叶子节点,它所经过的黑节点是一样的。当对它进行插入操作时,需要通过旋转和染色(红黑变换)来保证黑平衡。不过,相较于 AVL 树为了维持平衡的开销要小一些。关于红黑树的详细介绍,可以查看这篇文章:红黑树。

相比较于红黑树来说,跳表的实现也更简单一些。并且,按照区间来查找数据这个操作,红黑树的效率没有跳表高。

对应红黑树添加的核心代码如下,读者可自行参阅理解:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
private Node < K, V > add(Node < K, V > node, K key, V val) {

if (node == null) {
size++;
return new Node(key, val);

}

if (key.compareTo(node.key) < 0) {
node.left = add(node.left, key, val);
} else if (key.compareTo(node.key) > 0) {
node.right = add(node.right, key, val);
} else {
node.val = val;
}

//左节点不为红,右节点为红,左旋
if (isRed(node.right) && !isRed(node.left)) {
node = leftRotate(node);
}

//左链右旋
if (isRed(node.left) && isRed(node.left.left)) {
node = rightRotate(node);
}

//颜色翻转
if (isRed(node.left) && isRed(node.right)) {
flipColors(node);
}

return node;
}

B+树 vs 跳表

想必使用 MySQL 的读者都知道 B+树这个数据结构,B+树是一种常用的数据结构,具有以下特点:

  1. 多叉树结构:它是一棵多叉树,每个节点可以包含多个子节点,减小了树的高度,查询效率高。
  2. 存储效率高:其中非叶子节点存储多个 key,叶子节点存储 value,使得每个节点更够存储更多的键,根据索引进行范围查询时查询效率更高。-
  3. 平衡性:它是绝对的平衡,即树的各个分支高度相差不大,确保查询和插入时间复杂度为 O(log n) 。
  4. 顺序访问:叶子节点间通过链表指针相连,范围查询表现出色。
  5. 数据均匀分布:B+树插入时可能会导致数据重新分布,使得数据在整棵树分布更加均匀,保证范围查询和删除效率。

所以,B+树更适合作为数据库和文件系统中常用的索引结构之一,它的核心思想是通过可能少的 IO 定位到尽可能多的索引来获得查询数据。对于 Redis 这种内存数据库来说,它对这些并不感冒,因为 Redis 作为内存数据库它不可能存储大量的数据,所以对于索引不需要通过 B+树这种方式进行维护,只需按照概率进行随机维护即可,节约内存。而且使用跳表实现 zset 时相较前者来说更简单一些,在进行插入时只需通过索引将数据插入到链表中合适的位置再随机维护一定高度的索引即可,也不需要像 B+树那样插入时发现失衡时还需要对节点分裂与合并。

Redis 作者给出的理由

当然我们也可以通过 Redis 的作者自己给出的理由:

There are a few reasons:
1、They are not very memory intensive. It’s up to you basically. Changing parameters about the probability of a node to have a given number of levels will make then less memory intensive than btrees.
2、A sorted set is often target of many ZRANGE or ZREVRANGE operations, that is, traversing the skip list as a linked list. With this operation the cache locality of skip lists is at least as good as with other kind of balanced trees.
3、They are simpler to implement, debug, and so forth. For instance thanks to the skip list simplicity I received a patch (already in Redis master) with augmented skip lists implementing ZRANK in O(log(N)). It required little changes to the code.

翻译过来的意思就是:

有几个原因:

1、它们不是很占用内存。这主要取决于你。改变节点拥有给定层数的概率的参数,会使它们比 B 树更节省内存。

2、有序集合经常是许多 ZRANGE 或 ZREVRANGE 操作的目标,也就是说,以链表的方式遍历跳表。通过这种操作,跳表的缓存局部性至少和其他类型的平衡树一样好。

3、它们更容易实现、调试等等。例如,由于跳表的简单性,我收到了一个补丁(已经在 Redis 主分支中),用增强的跳表实现了 O(log(N))的 ZRANK。它只需要对代码做很少的修改。

小结

本文通过大量篇幅介绍跳表的工作原理和实现,帮助读者更进一步的熟悉跳表这一数据结构的优劣,最后再结合各个数据结构操作的特点进行比对,从而帮助读者更好的理解这道面试题,建议读者实现理解跳表时,尽可能配合执笔模拟来了解跳表的增删改查详细过程。

参考

  • 为啥 redis 使用跳表(skiplist)而不是使用 red-black?:https://www.zhihu.com/question/20202931/answer/16086538
  • Skip List–跳表(全网最详细的跳表文章没有之一):https://www.jianshu.com/p/9d8296562806
  • Redis 对象与底层数据结构详解:https://blog.csdn.net/shark_chili3007/article/details/104171986
  • Redis 有序集合(sorted set):https://www.runoob.com/redis/redis-sorted-sets.html
  • 红黑树和跳表比较:https://zhuanlan.zhihu.com/p/576984787
  • 为什么 redis 的 zset 用跳跃表而不用 b+ tree?:https://blog.csdn.net/f80407515/article/details/129136998

Redis集群详解(付费)

发表于 2023-04-24 | 分类于 分布式 , redis | 阅读次数:
字数统计: 50 字 | 阅读时长 ≈ 1 分钟

Redis 集群 相关的面试题为我的 知识星球(点击链接即可查看详细介绍以及加入方法)专属内容,已经整理到了《Java 面试指北》中。

Java并发常见面试题总结(下)

发表于 2023-04-18 | 分类于 Java , 并发 | 阅读次数:
字数统计: 15.2k 字 | 阅读时长 ≈ 57 分钟

ThreadLocal

ThreadLocal 有什么用?

通常情况下,我们创建的变量可以被任何一个线程访问和修改。这在多线程环境中可能导致数据竞争和线程安全问题。那么,如果想让每个线程都有自己的专属本地变量,该如何实现呢?

JDK 中提供的 ThreadLocal 类正是为了解决这个问题。**ThreadLocal 类允许每个线程绑定自己的值**,可以将其形象地比喻为一个“存放数据的盒子”。每个线程都有自己独立的盒子,用于存储私有数据,确保不同线程之间的数据互不干扰。

当你创建一个 ThreadLocal 变量时,每个访问该变量的线程都会拥有一个独立的副本。这也是 ThreadLocal 名称的由来。线程可以通过 get() 方法获取自己线程的本地副本,或通过 set() 方法修改该副本的值,从而避免了线程安全问题。

举个简单的例子:假设有两个人去宝屋收集宝物。如果他们共用一个袋子,必然会产生争执;但如果每个人都有一个独立的袋子,就不会有这个问题。如果将这两个人比作线程,那么 ThreadLocal 就是用来避免这两个线程竞争同一个资源的方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public class ThreadLocalExample {
private static ThreadLocal<Integer> threadLocal = ThreadLocal.withInitial(() -> 0);

public static void main(String[] args) {
Runnable task = () -> {
int value = threadLocal.get();
value += 1;
threadLocal.set(value);
System.out.println(Thread.currentThread().getName() + " Value: " + threadLocal.get());
};

Thread thread1 = new Thread(task, "Thread-1");
Thread thread2 = new Thread(task, "Thread-2");

thread1.start(); // 输出: Thread-1 Value: 1
thread2.start(); // 输出: Thread-2 Value: 1
}
}

⭐️ThreadLocal 原理了解吗?

从 Thread类源代码入手。

1
2
3
4
5
6
7
8
9
public class Thread implements Runnable {
//......
//与此线程有关的ThreadLocal值。由ThreadLocal类维护
ThreadLocal.ThreadLocalMap threadLocals = null;

//与此线程有关的InheritableThreadLocal值。由InheritableThreadLocal类维护
ThreadLocal.ThreadLocalMap inheritableThreadLocals = null;
//......
}

从上面Thread类 源代码可以看出Thread 类中有一个 threadLocals 和 一个 inheritableThreadLocals 变量,它们都是 ThreadLocalMap 类型的变量,我们可以把 ThreadLocalMap 理解为ThreadLocal 类实现的定制化的 HashMap。默认情况下这两个变量都是 null,只有当前线程调用 ThreadLocal 类的 set或get方法时才创建它们,实际上调用这两个方法的时候,我们调用的是ThreadLocalMap类对应的 get()、set()方法。

ThreadLocal类的set()方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public void set(T value) {
//获取当前请求的线程
Thread t = Thread.currentThread();
//取出 Thread 类内部的 threadLocals 变量(哈希表结构)
ThreadLocalMap map = getMap(t);
if (map != null)
// 将需要存储的值放入到这个哈希表中
map.set(this, value);
else
createMap(t, value);
}
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}

通过上面这些内容,我们足以通过猜测得出结论:最终的变量是放在了当前线程的 ThreadLocalMap 中,并不是存在 ThreadLocal 上,ThreadLocal 可以理解为只是ThreadLocalMap的封装,传递了变量值。 ThrealLocal 类中可以通过Thread.currentThread()获取到当前线程对象后,直接通过getMap(Thread t)可以访问到该线程的ThreadLocalMap对象。

每个Thread中都具备一个ThreadLocalMap,而ThreadLocalMap可以存储以ThreadLocal为 key ,Object 对象为 value 的键值对。

1
2
3
ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
//......
}

比如我们在同一个线程中声明了两个 ThreadLocal 对象的话, Thread内部都是使用仅有的那个ThreadLocalMap 存放数据的,ThreadLocalMap的 key 就是 ThreadLocal对象,value 就是 ThreadLocal 对象调用set方法设置的值。

ThreadLocal 数据结构如下图所示:

ThreadLocal 数据结构

ThreadLocalMap是ThreadLocal的静态内部类。

ThreadLocal内部类

⭐️ThreadLocal 内存泄露问题是怎么导致的?

ThreadLocal 内存泄漏的根本原因在于其内部实现机制。

通过上面的内容我们已经知道:每个线程维护一个名为 ThreadLocalMap 的 map。 当你使用 ThreadLocal 存储值时,实际上是将值存储在当前线程的 ThreadLocalMap 中,其中 ThreadLocal 实例本身作为 key,而你要存储的值作为 value。

ThreadLocalMap 的 key 和 value 引用机制:

  • key 是弱引用:ThreadLocalMap 中的 key 是 ThreadLocal 的弱引用 (WeakReference<ThreadLocal<?>>)。 这意味着,如果 ThreadLocal 实例不再被任何强引用指向,垃圾回收器会在下次 GC 时回收该实例,导致 ThreadLocalMap 中对应的 key 变为 null。
  • value 是强引用:ThreadLocalMap 中的 value 是强引用。 即使 key 被回收(变为 null),value 仍然存在于 ThreadLocalMap 中,被强引用,不会被回收。
1
2
3
4
5
6
7
8
9
static class Entry extends WeakReference<ThreadLocal<?>> {
/** The value associated with this ThreadLocal. */
Object value;

Entry(ThreadLocal<?> k, Object v) {
super(k);
value = v;
}
}

当 ThreadLocal 实例失去强引用后,其对应的 value 仍然存在于 ThreadLocalMap 中,因为 Entry 对象强引用了它。如果线程持续存活(例如线程池中的线程),ThreadLocalMap 也会一直存在,导致 key 为 null 的 entry 无法被垃圾回收,机会造成内存泄漏。

也就是说,内存泄漏的发生需要同时满足两个条件:

  1. ThreadLocal 实例不再被强引用;
  2. 线程持续存活,导致 ThreadLocalMap 长期存在。

虽然 ThreadLocalMap 在 get(), set() 和 remove() 操作时会尝试清理 key 为 null 的 entry,但这种清理机制是被动的,并不完全可靠。

如何避免内存泄漏的发生?

  1. 在使用完 ThreadLocal 后,务必调用 remove() 方法。 这是最安全和最推荐的做法。 remove() 方法会从 ThreadLocalMap 中显式地移除对应的 entry,彻底解决内存泄漏的风险。 即使将 ThreadLocal 定义为 static final,也强烈建议在每次使用后调用 remove()。
  2. 在线程池等线程复用的场景下,使用 try-finally 块可以确保即使发生异常,remove() 方法也一定会被执行。

线程池

什么是线程池?

顾名思义,线程池就是管理一系列线程的资源池。当有任务要处理时,直接从线程池中获取线程来处理,处理完之后线程并不会立即被销毁,而是等待下一个任务。

⭐️为什么要用线程池?

池化技术想必大家已经屡见不鲜了,线程池、数据库连接池、HTTP 连接池等等都是对这个思想的应用。池化技术的思想主要是为了减少每次获取资源的消耗,提高对资源的利用率。

线程池提供了一种限制和管理资源(包括执行一个任务)的方式。 每个线程池还维护一些基本统计信息,例如已完成任务的数量。

这里借用《Java 并发编程的艺术》提到的来说一下使用线程池的好处:

  • 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
  • 提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
  • 提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。

如何创建线程池?

方式一:通过ThreadPoolExecutor构造函数来创建(推荐)。

通过构造方法实现

方式二:通过 Executor 框架的工具类 Executors 来创建。

Executors工具类提供的创建线程池的方法如下图所示:

可以看出,通过Executors工具类可以创建多种类型的线程池,包括:

  • FixedThreadPool:固定线程数量的线程池。该线程池中的线程数量始终不变。当有一个新的任务提交时,线程池中若有空闲线程,则立即执行。若没有,则新的任务会被暂存在一个任务队列中,待有线程空闲时,便处理在任务队列中的任务。
  • SingleThreadExecutor: 只有一个线程的线程池。若多余一个任务被提交到该线程池,任务会被保存在一个任务队列中,待线程空闲,按先入先出的顺序执行队列中的任务。
  • CachedThreadPool: 可根据实际情况调整线程数量的线程池。线程池的线程数量不确定,但若有空闲线程可以复用,则会优先使用可复用的线程。若所有线程均在工作,又有新的任务提交,则会创建新的线程处理任务。所有线程在当前任务执行完毕后,将返回线程池进行复用。
  • ScheduledThreadPool:给定的延迟后运行任务或者定期执行任务的线程池。

⭐️为什么不推荐使用内置线程池?

在《阿里巴巴 Java 开发手册》“并发处理”这一章节,明确指出线程资源必须通过线程池提供,不允许在应用中自行显式创建线程。

为什么呢?

使用线程池的好处是减少在创建和销毁线程上所消耗的时间以及系统资源开销,解决资源不足的问题。如果不使用线程池,有可能会造成系统创建大量同类线程而导致消耗完内存或者“过度切换”的问题。

另外,《阿里巴巴 Java 开发手册》中强制线程池不允许使用 Executors 去创建,而是通过 ThreadPoolExecutor 构造函数的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险

Executors 返回线程池对象的弊端如下:

  • FixedThreadPool 和 SingleThreadExecutor:使用的是有界阻塞队列是 LinkedBlockingQueue ,其任务队列的最大长度为 Integer.MAX_VALUE ,可能堆积大量的请求,从而导致 OOM。
  • CachedThreadPool:使用的是同步队列 SynchronousQueue, 允许创建的线程数量为 Integer.MAX_VALUE ,如果任务数量过多且执行速度较慢,可能会创建大量的线程,从而导致 OOM。
  • ScheduledThreadPool 和 SingleThreadScheduledExecutor :使用的无界的延迟阻塞队列 DelayedWorkQueue ,任务队列最大长度为 Integer.MAX_VALUE ,可能堆积大量的请求,从而导致 OOM。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
// 有界队列 LinkedBlockingQueue
public static ExecutorService newFixedThreadPool(int nThreads) {

return new ThreadPoolExecutor(nThreads, nThreads,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());

}

// 无界队列 LinkedBlockingQueue
public static ExecutorService newSingleThreadExecutor() {

return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>()));

}

// 同步队列 SynchronousQueue,没有容量,最大线程数是 Integer.MAX_VALUE`
public static ExecutorService newCachedThreadPool() {

return new ThreadPoolExecutor(0, Integer.MAX_VALUE,60L, TimeUnit.SECONDS,new SynchronousQueue<Runnable>());

}

// DelayedWorkQueue(延迟阻塞队列)
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
return new ScheduledThreadPoolExecutor(corePoolSize);
}
public ScheduledThreadPoolExecutor(int corePoolSize) {
super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
new DelayedWorkQueue());
}

⭐️线程池常见参数有哪些?如何解释?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/**
* 用给定的初始参数创建一个新的ThreadPoolExecutor。
*/
public ThreadPoolExecutor(int corePoolSize,//线程池的核心线程数量
int maximumPoolSize,//线程池的最大线程数
long keepAliveTime,//当线程数大于核心线程数时,多余的空闲线程存活的最长时间
TimeUnit unit,//时间单位
BlockingQueue<Runnable> workQueue,//任务队列,用来储存等待执行任务的队列
ThreadFactory threadFactory,//线程工厂,用来创建线程,一般默认即可
RejectedExecutionHandler handler//拒绝策略,当提交的任务过多而不能及时处理时,我们可以定制策略来处理任务
) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}

ThreadPoolExecutor 3 个最重要的参数:

  • corePoolSize : 任务队列未达到队列容量时,最大可以同时运行的线程数量。
  • maximumPoolSize : 任务队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。
  • workQueue: 新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。

ThreadPoolExecutor其他常见参数 :

  • keepAliveTime:当线程池中的线程数量大于 corePoolSize ,即有非核心线程(线程池中核心线程以外的线程)时,这些非核心线程空闲后不会立即销毁,而是会等待,直到等待的时间超过了 keepAliveTime才会被回收销毁。
  • unit : keepAliveTime 参数的时间单位。
  • threadFactory :executor 创建新线程的时候会用到。
  • handler :拒绝策略(后面会单独详细介绍一下)。

下面这张图可以加深你对线程池中各个参数的相互关系的理解(图片来源:《Java 性能调优实战》):

线程池各个参数的关系

线程池的核心线程会被回收吗?

ThreadPoolExecutor 默认不会回收核心线程,即使它们已经空闲了。这是为了减少创建线程的开销,因为核心线程通常是要长期保持活跃的。但是,如果线程池是被用于周期性使用的场景,且频率不高(周期之间有明显的空闲时间),可以考虑将 allowCoreThreadTimeOut(boolean value) 方法的参数设置为 true,这样就会回收空闲(时间间隔由 keepAliveTime 指定)的核心线程了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public void allowCoreThreadTimeOut(boolean value) {
// 核心线程的 keepAliveTime 必须大于 0 才能启用超时机制
if (value && keepAliveTime <= 0) {
throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
}
// 设置 allowCoreThreadTimeOut 的值
if (value != allowCoreThreadTimeOut) {
allowCoreThreadTimeOut = value;
// 如果启用了超时机制,清理所有空闲的线程,包括核心线程
if (value) {
interruptIdleWorkers();
}
}
}

⭐️线程池的拒绝策略有哪些?

如果当前同时运行的线程数量达到最大线程数量并且队列也已经被放满了任务时,ThreadPoolExecutor 定义一些策略:

  • ThreadPoolExecutor.AbortPolicy:抛出 RejectedExecutionException来拒绝新任务的处理。
  • ThreadPoolExecutor.CallerRunsPolicy:调用执行者自己的线程运行任务,也就是直接在调用execute方法的线程中运行(run)被拒绝的任务,如果执行程序已关闭,则会丢弃该任务。因此这种策略会降低对于新任务提交速度,影响程序的整体性能。如果你的应用程序可以承受此延迟并且你要求任何一个任务请求都要被执行的话,你可以选择这个策略。
  • ThreadPoolExecutor.DiscardPolicy:不处理新任务,直接丢弃掉。
  • ThreadPoolExecutor.DiscardOldestPolicy:此策略将丢弃最早的未处理的任务请求。

举个例子:Spring 通过 ThreadPoolTaskExecutor 或者我们直接通过 ThreadPoolExecutor 的构造函数创建线程池的时候,当我们不指定 RejectedExecutionHandler 拒绝策略来配置线程池的时候,默认使用的是 AbortPolicy。在这种拒绝策略下,如果队列满了,ThreadPoolExecutor 将抛出 RejectedExecutionException 异常来拒绝新来的任务 ,这代表你将丢失对这个任务的处理。如果不想丢弃任务的话,可以使用CallerRunsPolicy。CallerRunsPolicy 和其他的几个策略不同,它既不会抛弃任务,也不会抛出异常,而是将任务回退给调用者,使用调用者的线程来执行任务。

1
2
3
4
5
6
7
8
9
10
11
public static class CallerRunsPolicy implements RejectedExecutionHandler {

public CallerRunsPolicy() { }

public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
// 直接主线程执行,而不是线程池中的线程执行
r.run();
}
}
}

如果不允许丢弃任务任务,应该选择哪个拒绝策略?

根据上面对线程池拒绝策略的介绍,相信大家很容易能够得出答案是:CallerRunsPolicy 。

这里我们再来结合CallerRunsPolicy 的源码来看看:

1
2
3
4
5
6
7
8
9
10
11
12
13
public static class CallerRunsPolicy implements RejectedExecutionHandler {

public CallerRunsPolicy() { }


public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
//只要当前程序没有关闭,就用执行execute方法的线程执行该任务
if (!e.isShutdown()) {

r.run();
}
}
}

从源码可以看出,只要当前程序不关闭就会使用执行execute方法的线程执行该任务。

CallerRunsPolicy 拒绝策略有什么风险?如何解决?

我们上面也提到了:如果想要保证任何一个任务请求都要被执行的话,那选择 CallerRunsPolicy 拒绝策略更合适一些。

不过,如果走到CallerRunsPolicy的任务是个非常耗时的任务,且处理提交任务的线程是主线程,可能会导致主线程阻塞,影响程序的正常运行。

这里简单举一个例子,该线程池限定了最大线程数为 2,阻塞队列大小为 1(这意味着第 4 个任务就会走到拒绝策略),ThreadUtil为 Hutool 提供的工具类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
public class ThreadPoolTest {

private static final Logger log = LoggerFactory.getLogger(ThreadPoolTest.class);

public static void main(String[] args) {
// 创建一个线程池,核心线程数为1,最大线程数为2
// 当线程数大于核心线程数时,多余的空闲线程存活的最长时间为60秒,
// 任务队列为容量为1的ArrayBlockingQueue,饱和策略为CallerRunsPolicy。
ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(1,
2,
60,
TimeUnit.SECONDS,
new ArrayBlockingQueue<>(1),
new ThreadPoolExecutor.CallerRunsPolicy());

// 提交第一个任务,由核心线程执行
threadPoolExecutor.execute(() -> {
log.info("核心线程执行第一个任务");
ThreadUtil.sleep(1, TimeUnit.MINUTES);
});

// 提交第二个任务,由于核心线程被占用,任务将进入队列等待
threadPoolExecutor.execute(() -> {
log.info("非核心线程处理入队的第二个任务");
ThreadUtil.sleep(1, TimeUnit.MINUTES);
});

// 提交第三个任务,由于核心线程被占用且队列已满,创建非核心线程处理
threadPoolExecutor.execute(() -> {
log.info("非核心线程处理第三个任务");
ThreadUtil.sleep(1, TimeUnit.MINUTES);
});

// 提交第四个任务,由于核心线程和非核心线程都被占用,队列也满了,根据CallerRunsPolicy策略,任务将由提交任务的线程(即主线程)来执行
threadPoolExecutor.execute(() -> {
log.info("主线程处理第四个任务");
ThreadUtil.sleep(2, TimeUnit.MINUTES);
});

// 提交第五个任务,主线程被第四个任务卡住,该任务必须等到主线程执行完才能提交
threadPoolExecutor.execute(() -> {
log.info("核心线程执行第五个任务");
});

// 关闭线程池
threadPoolExecutor.shutdown();
}
}

输出:

1
2
3
4
5
18:19:48.203 INFO  [pool-1-thread-1] c.j.concurrent.ThreadPoolTest - 核心线程执行第一个任务
18:19:48.203 INFO [pool-1-thread-2] c.j.concurrent.ThreadPoolTest - 非核心线程处理第三个任务
18:19:48.203 INFO [main] c.j.concurrent.ThreadPoolTest - 主线程处理第四个任务
18:20:48.212 INFO [pool-1-thread-2] c.j.concurrent.ThreadPoolTest - 非核心线程处理入队的第二个任务
18:21:48.219 INFO [pool-1-thread-2] c.j.concurrent.ThreadPoolTest - 核心线程执行第五个任务

从输出结果可以看出,因为CallerRunsPolicy这个拒绝策略,导致耗时的任务用了主线程执行,导致线程池阻塞,进而导致后续任务无法及时执行,严重的情况下很可能导致 OOM。

我们从问题的本质入手,调用者采用CallerRunsPolicy是希望所有的任务都能够被执行,暂时无法处理的任务又被保存在阻塞队列BlockingQueue中。这样的话,在内存允许的情况下,我们可以增加阻塞队列BlockingQueue的大小并调整堆内存以容纳更多的任务,确保任务能够被准确执行。

为了充分利用 CPU,我们还可以调整线程池的maximumPoolSize (最大线程数)参数,这样可以提高任务处理速度,避免累计在 BlockingQueue的任务过多导致内存用完。

调整阻塞队列大小和最大线程数

如果服务器资源以达到可利用的极限,这就意味我们要在设计策略上改变线程池的调度了,我们都知道,导致主线程卡死的本质就是因为我们不希望任何一个任务被丢弃。换个思路,有没有办法既能保证任务不被丢弃且在服务器有余力时及时处理呢?

这里提供的一种任务持久化的思路,这里所谓的任务持久化,包括但不限于:

  1. 设计一张任务表将任务存储到 MySQL 数据库中。
  2. Redis 缓存任务。
  3. 将任务提交到消息队列中。

这里以方案一为例,简单介绍一下实现逻辑:

  1. 实现RejectedExecutionHandler接口自定义拒绝策略,自定义拒绝策略负责将线程池暂时无法处理(此时阻塞队列已满)的任务入库(保存到 MySQL 中)。注意:线程池暂时无法处理的任务会先被放在阻塞队列中,阻塞队列满了才会触发拒绝策略。
  2. 继承BlockingQueue实现一个混合式阻塞队列,该队列包含 JDK 自带的ArrayBlockingQueue。另外,该混合式阻塞队列需要修改取任务处理的逻辑,也就是重写take()方法,取任务时优先从数据库中读取最早的任务,数据库中无任务时再从 ArrayBlockingQueue中去取任务。

将一部分任务保存到MySQL中

整个实现逻辑还是比较简单的,核心在于自定义拒绝策略和阻塞队列。如此一来,一旦我们的线程池中线程以达到满载时,我们就可以通过拒绝策略将最新任务持久化到 MySQL 数据库中,等到线程池有了有余力处理所有任务时,让其优先处理数据库中的任务以避免”饥饿”问题。

当然,对于这个问题,我们也可以参考其他主流框架的做法,以 Netty 为例,它的拒绝策略则是直接创建一个线程池以外的线程处理这些任务,为了保证任务的实时处理,这种做法可能需要良好的硬件设备且临时创建的线程无法做到准确的监控:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
private static final class NewThreadRunsPolicy implements RejectedExecutionHandler {
NewThreadRunsPolicy() {
super();
}
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
try {
//创建一个临时线程处理任务
final Thread t = new Thread(r, "Temporary task executor");
t.start();
} catch (Throwable e) {
throw new RejectedExecutionException(
"Failed to start a new thread", e);
}
}
}

ActiveMQ 则是尝试在指定的时效内尽可能的争取将任务入队,以保证最大交付:

1
2
3
4
5
6
7
8
9
10
11
12
new RejectedExecutionHandler() {
@Override
public void rejectedExecution(final Runnable r, final ThreadPoolExecutor executor) {
try {
//限时阻塞等待,实现尽可能交付
executor.getQueue().offer(r, 60, TimeUnit.SECONDS);
} catch (InterruptedException e) {
throw new RejectedExecutionException("Interrupted waiting for BrokerService.worker");
}
throw new RejectedExecutionException("Timed Out while attempting to enqueue Task.");
}
});

线程池常用的阻塞队列有哪些?

新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。

不同的线程池会选用不同的阻塞队列,我们可以结合内置线程池来分析。

  • 容量为 Integer.MAX_VALUE 的 LinkedBlockingQueue(有界阻塞队列):FixedThreadPool 和 SingleThreadExecutor 。FixedThreadPool最多只能创建核心线程数的线程(核心线程数和最大线程数相等),SingleThreadExecutor只能创建一个线程(核心线程数和最大线程数都是 1),二者的任务队列永远不会被放满。
  • SynchronousQueue(同步队列):CachedThreadPool 。SynchronousQueue 没有容量,不存储元素,目的是保证对于提交的任务,如果有空闲线程,则使用空闲线程来处理;否则新建一个线程来处理任务。也就是说,CachedThreadPool 的最大线程数是 Integer.MAX_VALUE ,可以理解为线程数是可以无限扩展的,可能会创建大量线程,从而导致 OOM。
  • DelayedWorkQueue(延迟队列):ScheduledThreadPool 和 SingleThreadScheduledExecutor 。DelayedWorkQueue 的内部元素并不是按照放入的时间排序,而是会按照延迟的时间长短对任务进行排序,内部采用的是“堆”的数据结构,可以保证每次出队的任务都是当前队列中执行时间最靠前的。DelayedWorkQueue 添加元素满了之后会自动扩容,增加原来容量的 50%,即永远不会阻塞,最大扩容可达 Integer.MAX_VALUE,所以最多只能创建核心线程数的线程。
  • ArrayBlockingQueue(有界阻塞队列):底层由数组实现,容量一旦创建,就不能修改。

⭐️线程池处理任务的流程了解吗?

图解线程池实现原理

  1. 如果当前运行的线程数小于核心线程数,那么就会新建一个线程来执行任务。
  2. 如果当前运行的线程数等于或大于核心线程数,但是小于最大线程数,那么就把该任务放入到任务队列里等待执行。
  3. 如果向任务队列投放任务失败(任务队列已经满了),但是当前运行的线程数是小于最大线程数的,就新建一个线程来执行任务。
  4. 如果当前运行的线程数已经等同于最大线程数了,新建线程将会使当前运行的线程超出最大线程数,那么当前任务会被拒绝,拒绝策略会调用RejectedExecutionHandler.rejectedExecution()方法。

再提一个有意思的小问题:线程池在提交任务前,可以提前创建线程吗?

答案是可以的!ThreadPoolExecutor 提供了两个方法帮助我们在提交任务之前,完成核心线程的创建,从而实现线程池预热的效果:

  • prestartCoreThread():启动一个线程,等待任务,如果已达到核心线程数,这个方法返回 false,否则返回 true;
  • prestartAllCoreThreads():启动所有的核心线程,并返回启动成功的核心线程数。

⭐️线程池中线程异常后,销毁还是复用?

直接说结论,需要分两种情况:

  • 使用execute()提交任务:当任务通过execute()提交到线程池并在执行过程中抛出异常时,如果这个异常没有在任务内被捕获,那么该异常会导致当前线程终止,并且异常会被打印到控制台或日志文件中。线程池会检测到这种线程终止,并创建一个新线程来替换它,从而保持配置的线程数不变。
  • 使用submit()提交任务:对于通过submit()提交的任务,如果在任务执行中发生异常,这个异常不会直接打印出来。相反,异常会被封装在由submit()返回的Future对象中。当调用Future.get()方法时,可以捕获到一个ExecutionException。在这种情况下,线程不会因为异常而终止,它会继续存在于线程池中,准备执行后续的任务。

简单来说:使用execute()时,未捕获异常导致线程终止,线程池创建新线程替代;使用submit()时,异常被封装在Future中,线程继续复用。

这种设计允许submit()提供更灵活的错误处理机制,因为它允许调用者决定如何处理异常,而execute()则适用于那些不需要关注执行结果的场景。

具体的源码分析可以参考这篇:线程池中线程异常后:销毁还是复用? - 京东技术。

⭐️如何给线程池命名?

初始化线程池的时候需要显示命名(设置线程池名称前缀),有利于定位问题。

默认情况下创建的线程名字类似 pool-1-thread-n 这样的,没有业务含义,不利于我们定位问题。

给线程池里的线程命名通常有下面两种方式:

1、利用 guava 的 ThreadFactoryBuilder

1
2
3
4
ThreadFactory threadFactory = new ThreadFactoryBuilder()
.setNameFormat(threadNamePrefix + "-%d")
.setDaemon(true).build();
ExecutorService threadPool = new ThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime, TimeUnit.MINUTES, workQueue, threadFactory);

2、自己实现 ThreadFactory。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.atomic.AtomicInteger;

/**
* 线程工厂,它设置线程名称,有利于我们定位问题。
*/
public final class NamingThreadFactory implements ThreadFactory {

private final AtomicInteger threadNum = new AtomicInteger();
private final String name;

/**
* 创建一个带名字的线程池生产工厂
*/
public NamingThreadFactory(String name) {
this.name = name;
}

@Override
public Thread newThread(Runnable r) {
Thread t = new Thread(r);
t.setName(name + " [#" + threadNum.incrementAndGet() + "]");
return t;
}
}

如何设定线程池的大小?

很多人甚至可能都会觉得把线程池配置过大一点比较好!我觉得这明显是有问题的。就拿我们生活中非常常见的一例子来说:并不是人多就能把事情做好,增加了沟通交流成本。你本来一件事情只需要 3 个人做,你硬是拉来了 6 个人,会提升做事效率嘛?我想并不会。 线程数量过多的影响也是和我们分配多少人做事情一样,对于多线程这个场景来说主要是增加了上下文切换成本。不清楚什么是上下文切换的话,可以看我下面的介绍。

上下文切换:

多线程编程中一般线程的个数都大于 CPU 核心的个数,而一个 CPU 核心在任意时刻只能被一个线程使用,为了让这些线程都能得到有效执行,CPU 采取的策略是为每个线程分配时间片并轮转的形式。当一个线程的时间片用完的时候就会重新处于就绪状态让给其他线程使用,这个过程就属于一次上下文切换。概括来说就是:当前任务在执行完 CPU 时间片切换到另一个任务之前会先保存自己的状态,以便下次再切换回这个任务时,可以再加载这个任务的状态。任务从保存到再加载的过程就是一次上下文切换。

上下文切换通常是计算密集型的。也就是说,它需要相当可观的处理器时间,在每秒几十上百次的切换中,每次切换都需要纳秒量级的时间。所以,上下文切换对系统来说意味着消耗大量的 CPU 时间,事实上,可能是操作系统中时间消耗最大的操作。

Linux 相比与其他操作系统(包括其他类 Unix 系统)有很多的优点,其中有一项就是,其上下文切换和模式切换的时间消耗非常少。

类比于现实世界中的人类通过合作做某件事情,我们可以肯定的一点是线程池大小设置过大或者过小都会有问题,合适的才是最好。

  • 如果我们设置的线程池数量太小的话,如果同一时间有大量任务/请求需要处理,可能会导致大量的请求/任务在任务队列中排队等待执行,甚至会出现任务队列满了之后任务/请求无法处理的情况,或者大量任务堆积在任务队列导致 OOM。这样很明显是有问题的,CPU 根本没有得到充分利用。
  • 如果我们设置线程数量太大,大量线程可能会同时在争取 CPU 资源,这样会导致大量的上下文切换,从而增加线程的执行时间,影响了整体执行效率。

有一个简单并且适用面比较广的公式:

  • CPU 密集型任务(N+1): 这种任务消耗的主要是 CPU 资源,可以将线程数设置为 N(CPU 核心数)+1。比 CPU 核心数多出来的一个线程是为了防止线程偶发的缺页中断,或者其它原因导致的任务暂停而带来的影响。一旦任务暂停,CPU 就会处于空闲状态,而在这种情况下多出来的一个线程就可以充分利用 CPU 的空闲时间。
  • I/O 密集型任务(2N): 这种任务应用起来,系统会用大部分的时间来处理 I/O 交互,而线程在处理 I/O 的时间段内不会占用 CPU 来处理,这时就可以将 CPU 交出给其它线程使用。因此在 I/O 密集型任务的应用中,我们可以多配置一些线程,具体的计算方法是 2N。

如何判断是 CPU 密集任务还是 IO 密集任务?

CPU 密集型简单理解就是利用 CPU 计算能力的任务比如你在内存中对大量数据进行排序。但凡涉及到网络读取,文件读取这类都是 IO 密集型,这类任务的特点是 CPU 计算耗费时间相比于等待 IO 操作完成的时间来说很少,大部分时间都花在了等待 IO 操作完成上。

🌈 拓展一下(参见:issue#1737):

线程数更严谨的计算的方法应该是:最佳线程数 = N(CPU 核心数)∗(1+WT(线程等待时间)/ST(线程计算时间)),其中 WT(线程等待时间)=线程运行总时间 - ST(线程计算时间)。

线程等待时间所占比例越高,需要越多线程。线程计算时间所占比例越高,需要越少线程。

我们可以通过 JDK 自带的工具 VisualVM 来查看 WT/ST 比例。

CPU 密集型任务的 WT/ST 接近或者等于 0,因此, 线程数可以设置为 N(CPU 核心数)∗(1+0)= N,和我们上面说的 N(CPU 核心数)+1 差不多。

IO 密集型任务下,几乎全是线程等待时间,从理论上来说,你就可以将线程数设置为 2N(按道理来说,WT/ST 的结果应该比较大,这里选择 2N 的原因应该是为了避免创建过多线程吧)。

公式也只是参考,具体还是要根据项目实际线上运行情况来动态调整。我在后面介绍的美团的线程池参数动态配置这种方案就非常不错,很实用!

⭐️如何动态修改线程池的参数?

美团技术团队在《Java 线程池实现原理及其在美团业务中的实践》这篇文章中介绍到对线程池参数实现可自定义配置的思路和方法。

美团技术团队的思路是主要对线程池的核心参数实现自定义可配置。这三个核心参数是:

  • corePoolSize : 核心线程数线程数定义了最小可以同时运行的线程数量。
  • maximumPoolSize : 当队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。
  • workQueue: 当新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。

为什么是这三个参数?

我在Java 线程池详解 这篇文章中就说过这三个参数是 ThreadPoolExecutor 最重要的参数,它们基本决定了线程池对于任务的处理策略。

如何支持参数动态配置? 且看 ThreadPoolExecutor 提供的下面这些方法。

格外需要注意的是corePoolSize, 程序运行期间的时候,我们调用 setCorePoolSize()这个方法的话,线程池会首先判断当前工作线程数是否大于corePoolSize,如果大于的话就会回收工作线程。

另外,你也看到了上面并没有动态指定队列长度的方法,美团的方式是自定义了一个叫做 ResizableCapacityLinkedBlockIngQueue 的队列(主要就是把LinkedBlockingQueue的 capacity 字段的 final 关键字修饰给去掉了,让它变为可变的)。

最终实现的可动态修改线程池参数效果如下。👏👏👏

动态配置线程池参数最终效果

还没看够?我在《后端面试高频系统设计&场景题》中详细介绍了如何设计一个动态线程池,这也是面试中常问的一道系统设计题。

《后端面试高频系统设计&场景题》

如果我们的项目也想要实现这种效果的话,可以借助现成的开源项目:

  • **Hippo4j**:异步线程池框架,支持线程池动态变更&监控&报警,无需修改代码轻松引入。支持多种使用模式,轻松引入,致力于提高系统运行保障能力。
  • **Dynamic TP**:轻量级动态线程池,内置监控告警功能,集成三方中间件线程池管理,基于主流配置中心(已支持 Nacos、Apollo,Zookeeper、Consul、Etcd,可通过 SPI 自定义实现)。

⭐️如何设计一个能够根据任务的优先级来执行的线程池?

这是一个常见的面试问题,本质其实还是在考察求职者对于线程池以及阻塞队列的掌握。

我们上面也提到了,不同的线程池会选用不同的阻塞队列作为任务队列,比如FixedThreadPool 使用的是LinkedBlockingQueue(有界队列),默认构造器初始的队列长度为 Integer.MAX_VALUE ,由于队列永远不会被放满,因此FixedThreadPool最多只能创建核心线程数的线程。

假如我们需要实现一个优先级任务线程池的话,那可以考虑使用 PriorityBlockingQueue (优先级阻塞队列)作为任务队列(ThreadPoolExecutor 的构造函数有一个 workQueue 参数可以传入任务队列)。

ThreadPoolExecutor构造函数

PriorityBlockingQueue 是一个支持优先级的无界阻塞队列,可以看作是线程安全的 PriorityQueue,两者底层都是使用小顶堆形式的二叉堆,即值最小的元素优先出队。不过,PriorityQueue 不支持阻塞操作。

要想让 PriorityBlockingQueue 实现对任务的排序,传入其中的任务必须是具备排序能力的,方式有两种:

  1. 提交到线程池的任务实现 Comparable 接口,并重写 compareTo 方法来指定任务之间的优先级比较规则。
  2. 创建 PriorityBlockingQueue 时传入一个 Comparator 对象来指定任务之间的排序规则(推荐)。

不过,这存在一些风险和问题,比如:

  • PriorityBlockingQueue 是无界的,可能堆积大量的请求,从而导致 OOM。
  • 可能会导致饥饿问题,即低优先级的任务长时间得不到执行。
  • 由于需要对队列中的元素进行排序操作以及保证线程安全(并发控制采用的是可重入锁 ReentrantLock),因此会降低性能。

对于 OOM 这个问题的解决比较简单粗暴,就是继承PriorityBlockingQueue 并重写一下 offer 方法(入队)的逻辑,当插入的元素数量超过指定值就返回 false 。

饥饿问题这个可以通过优化设计来解决(比较麻烦),比如等待时间过长的任务会被移除并重新添加到队列中,但是优先级会被提升。

对于性能方面的影响,是没办法避免的,毕竟需要对任务进行排序操作。并且,对于大部分业务场景来说,这点性能影响是可以接受的。

Future

重点是要掌握 CompletableFuture 的使用以及常见面试题。

除了下面的面试题之外,还推荐你看看我写的这篇文章: CompletableFuture 详解。

Future 类有什么用?

Future 类是异步思想的典型运用,主要用在一些需要执行耗时任务的场景,避免程序一直原地等待耗时任务执行完成,执行效率太低。具体来说是这样的:当我们执行某一耗时的任务时,可以将这个耗时任务交给一个子线程去异步执行,同时我们可以干点其他事情,不用傻傻等待耗时任务执行完成。等我们的事情干完后,我们再通过 Future 类获取到耗时任务的执行结果。这样一来,程序的执行效率就明显提高了。

这其实就是多线程中经典的 Future 模式,你可以将其看作是一种设计模式,核心思想是异步调用,主要用在多线程领域,并非 Java 语言独有。

在 Java 中,Future 类只是一个泛型接口,位于 java.util.concurrent 包下,其中定义了 5 个方法,主要包括下面这 4 个功能:

  • 取消任务;
  • 判断任务是否被取消;
  • 判断任务是否已经执行完成;
  • 获取任务执行结果。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// V 代表了Future执行的任务返回值的类型
public interface Future<V> {
// 取消任务执行
// 成功取消返回 true,否则返回 false
boolean cancel(boolean mayInterruptIfRunning);
// 判断任务是否被取消
boolean isCancelled();
// 判断任务是否已经执行完成
boolean isDone();
// 获取任务执行结果
V get() throws InterruptedException, ExecutionException;
// 指定时间内没有返回计算结果就抛出 TimeOutException 异常
V get(long timeout, TimeUnit unit)

throws InterruptedException, ExecutionException, TimeoutExceptio

}

简单理解就是:我有一个任务,提交给了 Future 来处理。任务执行期间我自己可以去做任何想做的事情。并且,在这期间我还可以取消任务以及获取任务的执行状态。一段时间之后,我就可以 Future 那里直接取出任务执行结果。

Callable 和 Future 有什么关系?

我们可以通过 FutureTask 来理解 Callable 和 Future 之间的关系。

FutureTask 提供了 Future 接口的基本实现,常用来封装 Callable 和 Runnable,具有取消任务、查看任务是否执行完成以及获取任务执行结果的方法。ExecutorService.submit() 方法返回的其实就是 Future 的实现类 FutureTask 。

1
2
<T> Future<T> submit(Callable<T> task);
Future<?> submit(Runnable task);

FutureTask 不光实现了 Future接口,还实现了Runnable 接口,因此可以作为任务直接被线程执行。

FutureTask 有两个构造函数,可传入 Callable 或者 Runnable 对象。实际上,传入 Runnable 对象也会在方法内部转换为Callable 对象。

1
2
3
4
5
6
7
8
9
10
11
public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW;
}
public FutureTask(Runnable runnable, V result) {
// 通过适配器RunnableAdapter来将Runnable对象runnable转换成Callable对象
this.callable = Executors.callable(runnable, result);
this.state = NEW;
}

FutureTask相当于对Callable 进行了封装,管理着任务执行的情况,存储了 Callable 的 call 方法的任务执行结果。

CompletableFuture 类有什么用?

Future 在实际使用过程中存在一些局限性比如不支持异步任务的编排组合、获取计算结果的 get() 方法为阻塞调用。

Java 8 才被引入CompletableFuture 类可以解决Future 的这些缺陷。CompletableFuture 除了提供了更为好用和强大的 Future 特性之外,还提供了函数式编程、异步任务编排组合(可以将多个异步任务串联起来,组成一个完整的链式调用)等能力。

下面我们来简单看看 CompletableFuture 类的定义。

1
2
public class CompletableFuture<T> implements Future<T>, CompletionStage<T> {
}

可以看到,CompletableFuture 同时实现了 Future 和 CompletionStage 接口。

CompletionStage 接口描述了一个异步计算的阶段。很多计算可以分成多个阶段或步骤,此时可以通过它将所有步骤组合起来,形成异步计算的流水线。

CompletionStage 接口中的方法比较多,CompletableFuture 的函数式能力就是这个接口赋予的。从这个接口的方法参数你就可以发现其大量使用了 Java8 引入的函数式编程。

⭐️一个任务需要依赖另外两个任务执行完之后再执行,怎么设计?

这种任务编排场景非常适合通过CompletableFuture实现。这里假设要实现 T3 在 T2 和 T1 执行完后执行。

代码如下(这里为了简化代码,用到了 Hutool 的线程工具类 ThreadUtil 和日期时间工具类 DateUtil):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// T1
CompletableFuture<Void> futureT1 = CompletableFuture.runAsync(() -> {
System.out.println("T1 is executing. Current time:" + DateUtil.now());
// 模拟耗时操作
ThreadUtil.sleep(1000);
});
// T2
CompletableFuture<Void> futureT2 = CompletableFuture.runAsync(() -> {
System.out.println("T2 is executing. Current time:" + DateUtil.now());
ThreadUtil.sleep(1000);
});

// 使用allOf()方法合并T1和T2的CompletableFuture,等待它们都完成
CompletableFuture<Void> bothCompleted = CompletableFuture.allOf(futureT1, futureT2);
// 当T1和T2都完成后,执行T3
bothCompleted.thenRunAsync(() -> System.out.println("T3 is executing after T1 and T2 have completed.Current time:" + DateUtil.now()));
// 等待所有任务完成,验证效果
ThreadUtil.sleep(3000);

通过 CompletableFuture 的 allOf()这个静态方法来并行运行 T1 和 T2 。当 T1 和

⭐️使用 CompletableFuture,有一个任务失败,如何处理异常?

使用 CompletableFuture的时候一定要以正确的方式进行异常处理,避免异常丢失或者出现不可控问题。

下面是一些建议:

  • 使用 whenComplete 方法可以在任务完成时触发回调函数,并正确地处理异常,而不是让异常被吞噬或丢失。
  • 使用 exceptionally 方法可以处理异常并重新抛出,以便异常能够传播到后续阶段,而不是让异常被忽略或终止。
  • 使用 handle 方法可以处理正常的返回结果和异常,并返回一个新的结果,而不是让异常影响正常的业务逻辑。
  • 使用 CompletableFuture.allOf 方法可以组合多个 CompletableFuture,并统一处理所有任务的异常,而不是让异常处理过于冗长或重复。
  • ……

⭐️在使用 CompletableFuture 的时候为什么要自定义线程池?

CompletableFuture 默认使用全局共享的 ForkJoinPool.commonPool() 作为执行器,所有未指定执行器的异步任务都会使用该线程池。这意味着应用程序、多个库或框架(如 Spring、第三方库)若都依赖 CompletableFuture,默认情况下它们都会共享同一个线程池。

虽然 ForkJoinPool 效率很高,但当同时提交大量任务时,可能会导致资源竞争和线程饥饿,进而影响系统性能。

为避免这些问题,建议为 CompletableFuture 提供自定义线程池,带来以下优势:

  • 隔离性:为不同任务分配独立的线程池,避免全局线程池资源争夺。
  • 资源控制:根据任务特性调整线程池大小和队列类型,优化性能表现。
  • 异常处理:通过自定义 ThreadFactory 更好地处理线程中的异常情况。
1
2
3
4
5
6
7
private ThreadPoolExecutor executor = new ThreadPoolExecutor(10, 10,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());

CompletableFuture.runAsync(() -> {
//...
}, executor);

AQS

AQS 是什么?

AQS 的全称为 AbstractQueuedSynchronizer ,翻译过来的意思就是抽象队列同步器。这个类在 java.util.concurrent.locks 包下面。

AQS 就是一个抽象类,主要用来构建锁和同步器。

1
2
public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable {
}

AQS 为构建锁和同步器提供了一些通用功能的实现,因此,使用 AQS 能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的 ReentrantLock,Semaphore,其他的诸如 ReentrantReadWriteLock,SynchronousQueue等等皆是基于 AQS 的。

⭐️AQS 的原理是什么?

AQS 核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制 AQS 是用 CLH 队列锁 实现的,即将暂时获取不到锁的线程加入到队列中。

CLH(Craig,Landin,and Hagersten) 队列是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系)。AQS 是将每条请求共享资源的线程封装成一个 CLH 锁队列的一个结点(Node)来实现锁的分配。在 CLH 同步队列中,一个节点表示一个线程,它保存着线程的引用(thread)、 当前节点在队列中的状态(waitStatus)、前驱节点(prev)、后继节点(next)。

CLH 队列结构如下图所示:

AQS(AbstractQueuedSynchronizer)的核心原理图(图源Java 并发之 AQS 详解)如下:

AQS 使用 int 成员变量 state 表示同步状态,通过内置的 线程等待队列 来完成获取资源线程的排队工作。

state 变量由 volatile 修饰,用于展示当前临界资源的获锁情况。

1
2
// 共享变量,使用volatile修饰保证线程可见性
private volatile int state;

另外,状态信息 state 可以通过 protected 类型的getState()、setState()和compareAndSetState() 进行操作。并且,这几个方法都是 final 修饰的,在子类中无法被重写。

1
2
3
4
5
6
7
8
9
10
11
12
//返回同步状态的当前值
protected final int getState() {
return state;
}
// 设置同步状态的值
protected final void setState(int newState) {
state = newState;
}
//原子地(CAS操作)将同步状态值设置为给定值update如果当前同步状态的值等于expect(期望值)
protected final boolean compareAndSetState(int expect, int update) {
return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}

以 ReentrantLock 为例,state 初始值为 0,表示未锁定状态。A 线程 lock() 时,会调用 tryAcquire() 独占该锁并将 state+1 。此后,其他线程再 tryAcquire() 时就会失败,直到 A 线程 unlock() 到 state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A 线程自己是可以重复获取此锁的(state 会累加),这就是可重入的概念。但要注意,获取多少次就要释放多少次,这样才能保证 state 是能回到零态的。

再以 CountDownLatch 以例,任务分为 N 个子线程去执行,state 也初始化为 N(注意 N 要与线程个数一致)。这 N 个子线程是并行执行的,每个子线程执行完后countDown() 一次,state 会 CAS(Compare and Swap) 减 1。等到所有子线程都执行完后(即 state=0 ),会 unpark() 主调用线程,然后主调用线程就会从 await() 函数返回,继续后余动作。

Semaphore 有什么用?

synchronized 和 ReentrantLock 都是一次只允许一个线程访问某个资源,而Semaphore(信号量)可以用来控制同时访问特定资源的线程数量。

Semaphore 的使用简单,我们这里假设有 N(N>5) 个线程来获取 Semaphore 中的共享资源,下面的代码表示同一时刻 N 个线程中只有 5 个线程能获取到共享资源,其他线程都会阻塞,只有获取到共享资源的线程才能执行。等到有线程释放了共享资源,其他阻塞的线程才能获取到。

1
2
3
4
5
6
// 初始共享资源数量
final Semaphore semaphore = new Semaphore(5);
// 获取1个许可
semaphore.acquire();
// 释放1个许可
semaphore.release();

当初始的资源个数为 1 的时候,Semaphore 退化为排他锁。

Semaphore 有两种模式:。

  • 公平模式: 调用 acquire() 方法的顺序就是获取许可证的顺序,遵循 FIFO;
  • 非公平模式: 抢占式的。

Semaphore 对应的两个构造方法如下:

1
2
3
4
5
6
7
public Semaphore(int permits) {
sync = new NonfairSync(permits);
}

public Semaphore(int permits, boolean fair) {
sync = fair ? new FairSync(permits) : new NonfairSync(permits);
}

这两个构造方法,都必须提供许可的数量,第二个构造方法可以指定是公平模式还是非公平模式,默认非公平模式。

Semaphore 通常用于那些资源有明确访问数量限制的场景比如限流(仅限于单机模式,实际项目中推荐使用 Redis +Lua 来做限流)。

Semaphore 的原理是什么?

Semaphore 是共享锁的一种实现,它默认构造 AQS 的 state 值为 permits,你可以将 permits 的值理解为许可证的数量,只有拿到许可证的线程才能执行。

调用semaphore.acquire() ,线程尝试获取许可证,如果 state >= 0 的话,则表示可以获取成功。如果获取成功的话,使用 CAS 操作去修改 state 的值 state=state-1。如果 state<0 的话,则表示许可证数量不足。此时会创建一个 Node 节点加入阻塞队列,挂起当前线程。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/**
* 获取1个许可证
*/
public void acquire() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
/**
* 共享模式下获取许可证,获取成功则返回,失败则加入阻塞队列,挂起线程
*/
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
// 尝试获取许可证,arg为获取许可证个数,当可用许可证数减当前获取的许可证数结果小于0,则创建一个节点加入阻塞队列,挂起当前线程。
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}

调用semaphore.release(); ,线程尝试释放许可证,并使用 CAS 操作去修改 state 的值 state=state+1。释放许可证成功之后,同时会唤醒同步队列中的一个线程。被唤醒的线程会重新尝试去修改 state 的值 state=state-1 ,如果 state>=0 则获取令牌成功,否则重新进入阻塞队列,挂起线程。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// 释放一个许可证
public void release() {
sync.releaseShared(1);
}

// 释放共享锁,同时会唤醒同步队列中的一个线程。
public final boolean releaseShared(int arg) {
//释放共享锁
if (tryReleaseShared(arg)) {
//唤醒同步队列中的一个线程
doReleaseShared();
return true;
}
return false;
}

CountDownLatch 有什么用?

CountDownLatch 允许 count 个线程阻塞在一个地方,直至所有线程的任务都执行完毕。

CountDownLatch 是一次性的,计数器的值只能在构造方法中初始化一次,之后没有任何机制再次对其设置值,当 CountDownLatch 使用完毕后,它不能再次被使用。

CountDownLatch 的原理是什么?

CountDownLatch 是共享锁的一种实现,它默认构造 AQS 的 state 值为 count。当线程使用 countDown() 方法时,其实使用了tryReleaseShared方法以 CAS 的操作来减少 state,直至 state 为 0 。当调用 await() 方法的时候,如果 state 不为 0,那就证明任务还没有执行完毕,await() 方法就会一直阻塞,也就是说 await() 方法之后的语句不会被执行。直到count 个线程调用了countDown()使 state 值被减为 0,或者调用await()的线程被中断,该线程才会从阻塞中被唤醒,await() 方法之后的语句得到执行。

用过 CountDownLatch 么?什么场景下用的?

CountDownLatch 的作用就是 允许 count 个线程阻塞在一个地方,直至所有线程的任务都执行完毕。之前在项目中,有一个使用多线程读取多个文件处理的场景,我用到了 CountDownLatch 。具体场景是下面这样的:

我们要读取处理 6 个文件,这 6 个任务都是没有执行顺序依赖的任务,但是我们需要返回给用户的时候将这几个文件的处理的结果进行统计整理。

为此我们定义了一个线程池和 count 为 6 的CountDownLatch对象 。使用线程池处理读取任务,每一个线程处理完之后就将 count-1,调用CountDownLatch对象的 await()方法,直到所有文件读取完之后,才会接着执行后面的逻辑。

伪代码是下面这样的:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
public class CountDownLatchExample1 {
// 处理文件的数量
private static final int threadCount = 6;

public static void main(String[] args) throws InterruptedException {
// 创建一个具有固定线程数量的线程池对象(推荐使用构造方法创建)
ExecutorService threadPool = Executors.newFixedThreadPool(10);
final CountDownLatch countDownLatch = new CountDownLatch(threadCount);
for (int i = 0; i < threadCount; i++) {
final int threadnum = i;
threadPool.execute(() -> {
try {
//处理文件的业务操作
//......
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
//表示一个文件已经被完成
countDownLatch.countDown();
}

});
}
countDownLatch.await();
threadPool.shutdown();
System.out.println("finish");
}
}

有没有可以改进的地方呢?

可以使用 CompletableFuture 类来改进!Java8 的 CompletableFuture 提供了很多对多线程友好的方法,使用它可以很方便地为我们编写多线程程序,什么异步、串行、并行或者等待所有线程执行完任务什么的都非常方便。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
CompletableFuture<Void> task1 =
CompletableFuture.supplyAsync(()->{
//自定义业务操作
});
......
CompletableFuture<Void> task6 =
CompletableFuture.supplyAsync(()->{
//自定义业务操作
});
......
CompletableFuture<Void> headerFuture=CompletableFuture.allOf(task1,.....,task6);

try {
headerFuture.join();
} catch (Exception ex) {
//......
}
System.out.println("all done. ");

上面的代码还可以继续优化,当任务过多的时候,把每一个 task 都列出来不太现实,可以考虑通过循环来添加任务。

1
2
3
4
5
6
7
8
9
10
//文件夹位置
List<String> filePaths = Arrays.asList(...)
// 异步处理所有文件
List<CompletableFuture<String>> fileFutures = filePaths.stream()
.map(filePath -> doSomeThing(filePath))
.collect(Collectors.toList());
// 将他们合并起来
CompletableFuture<Void> allFutures = CompletableFuture.allOf(
fileFutures.toArray(new CompletableFuture[fileFutures.size()])
);

CyclicBarrier 有什么用?

CyclicBarrier 和 CountDownLatch 非常类似,它也可以实现线程间的技术等待,但是它的功能比 CountDownLatch 更加复杂和强大。主要应用场景和 CountDownLatch 类似。

CountDownLatch 的实现是基于 AQS 的,而 CycliBarrier 是基于 ReentrantLock(ReentrantLock 也属于 AQS 同步器)和 Condition 的。

CyclicBarrier 的字面意思是可循环使用(Cyclic)的屏障(Barrier)。它要做的事情是:让一组线程到达一个屏障(也可以叫同步点)时被阻塞,直到最后一个线程到达屏障时,屏障才会开门,所有被屏障拦截的线程才会继续干活。

CyclicBarrier 的原理是什么?

CyclicBarrier 内部通过一个 count 变量作为计数器,count 的初始值为 parties 属性的初始化值,每当一个线程到了栅栏这里了,那么就将计数器减 1。如果 count 值为 0 了,表示这是这一代最后一个线程到达栅栏,就尝试执行我们构造方法中输入的任务。

1
2
3
4
//每次拦截的线程数
private final int parties;
//计数器
private int count;

下面我们结合源码来简单看看。

1、CyclicBarrier 默认的构造方法是 CyclicBarrier(int parties),其参数表示屏障拦截的线程数量,每个线程调用 await() 方法告诉 CyclicBarrier 我已经到达了屏障,然后当前线程被阻塞。

1
2
3
4
5
6
7
8
9
10
public CyclicBarrier(int parties) {
this(parties, null);
}

public CyclicBarrier(int parties, Runnable barrierAction) {
if (parties <= 0) throw new IllegalArgumentException();
this.parties = parties;
this.count = parties;
this.barrierCommand = barrierAction;
}

其中,parties 就代表了有拦截的线程的数量,当拦截的线程数量达到这个值的时候就打开栅栏,让所有线程通过。

2、当调用 CyclicBarrier 对象调用 await() 方法时,实际上调用的是 dowait(false, 0L)方法。 await() 方法就像树立起一个栅栏的行为一样,将线程挡住了,当拦住的线程数量达到 parties 的值时,栅栏才会打开,线程才得以通过执行。

1
2
3
4
5
6
7
public int await() throws InterruptedException, BrokenBarrierException {
try {
return dowait(false, 0L);
} catch (TimeoutException toe) {
throw new Error(toe); // cannot happen
}
}

dowait(false, 0L)方法源码分析如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
// 当线程数量或者请求数量达到 count 时 await 之后的方法才会被执行。上面的示例中 count 的值就为 5。
private int count;
/**
* Main barrier code, covering the various policies.
*/
private int dowait(boolean timed, long nanos)
throws InterruptedException, BrokenBarrierException,
TimeoutException {
final ReentrantLock lock = this.lock;
// 锁住
lock.lock();
try {
final Generation g = generation;

if (g.broken)
throw new BrokenBarrierException();

// 如果线程中断了,抛出异常
if (Thread.interrupted()) {
breakBarrier();
throw new InterruptedException();
}
// cout减1
int index = --count;
// 当 count 数量减为 0 之后说明最后一个线程已经到达栅栏了,也就是达到了可以执行await 方法之后的条件
if (index == 0) { // tripped
boolean ranAction = false;
try {
final Runnable command = barrierCommand;
if (command != null)
command.run();
ranAction = true;
// 将 count 重置为 parties 属性的初始化值
// 唤醒之前等待的线程
// 下一波执行开始
nextGeneration();
return 0;
} finally {
if (!ranAction)
breakBarrier();
}
}

// loop until tripped, broken, interrupted, or timed out
for (;;) {
try {
if (!timed)
trip.await();
else if (nanos > 0L)
nanos = trip.awaitNanos(nanos);
} catch (InterruptedException ie) {
if (g == generation && ! g.broken) {
breakBarrier();
throw ie;
} else {
// We're about to finish waiting even if we had not
// been interrupted, so this interrupt is deemed to
// "belong" to subsequent execution.
Thread.currentThread().interrupt();
}
}

if (g.broken)
throw new BrokenBarrierException();

if (g != generation)
return index;

if (timed && nanos <= 0L) {
breakBarrier();
throw new TimeoutException();
}
}
} finally {
lock.unlock();
}
}

虚拟线程

虚拟线程在 Java 21 正式发布,这是一项重量级的更新。

虽然目前面试中问的不多,但还是建议大家去简单了解一下,具体可以阅读这篇文章:虚拟线程极简入门 。重点搞清楚虚拟线程和平台线程的关系以及虚拟线程的优势即可。

参考

  • 《深入理解 Java 虚拟机》
  • 《实战 Java 高并发程序设计》
  • Java 线程池的实现原理及其在业务中的最佳实践:阿里云开发者:https://mp.weixin.qq.com/s/icrrxEsbABBvEU0Gym7D5Q
  • 带你了解下 SynchronousQueue(并发队列专题):https://juejin.cn/post/7031196740128768037
  • 阻塞队列 — DelayedWorkQueue 源码分析:https://zhuanlan.zhihu.com/p/310621485
  • Java 多线程(三)——FutureTask/CompletableFuture:https://www.cnblogs.com/iwehdio/p/14285282.html
  • Java 并发之 AQS 详解:https://www.cnblogs.com/waterystone/p/4920797.html
  • Java 并发包基石-AQS 详解:https://www.cnblogs.com/chengxiao/archive/2017/07/24/7141160.html

Java 线程池最佳实践

发表于 2023-04-03 | 分类于 Java , 并发 | 阅读次数:
字数统计: 4.7k 字 | 阅读时长 ≈ 17 分钟

简单总结一下我了解的使用线程池的时候应该注意的东西,网上似乎还没有专门写这方面的文章。

1、正确声明线程池

线程池必须手动通过 ThreadPoolExecutor 的构造函数来声明,避免使用Executors 类创建线程池,会有 OOM 风险。

Executors 返回线程池对象的弊端如下(后文会详细介绍到):

  • **FixedThreadPool 和 SingleThreadExecutor**:使用的是有界阻塞队列 LinkedBlockingQueue,任务队列的默认长度和最大长度为 Integer.MAX_VALUE,可能堆积大量的请求,从而导致 OOM。
  • **CachedThreadPool**:使用的是同步队列 SynchronousQueue,允许创建的线程数量为 Integer.MAX_VALUE ,可能会创建大量线程,从而导致 OOM。
  • ScheduledThreadPool 和 SingleThreadScheduledExecutor : 使用的无界的延迟阻塞队列DelayedWorkQueue,任务队列最大长度为 Integer.MAX_VALUE,可能堆积大量的请求,从而导致 OOM。

说白了就是:使用有界队列,控制线程创建数量。

除了避免 OOM 的原因之外,不推荐使用 Executors提供的两种快捷的线程池的原因还有:

  • 实际使用中需要根据自己机器的性能、业务场景来手动配置线程池的参数比如核心线程数、使用的任务队列、饱和策略等等。
  • 我们应该显示地给我们的线程池命名,这样有助于我们定位问题。

2、监测线程池运行状态

你可以通过一些手段来检测线程池的运行状态比如 SpringBoot 中的 Actuator 组件。

除此之外,我们还可以利用 ThreadPoolExecutor 的相关 API 做一个简陋的监控。从下图可以看出, ThreadPoolExecutor提供了获取线程池当前的线程数和活跃线程数、已经执行完成的任务数、正在排队中的任务数等等。

下面是一个简单的 Demo。printThreadPoolStatus()会每隔一秒打印出线程池的线程数、活跃线程数、完成的任务数、以及队列中的任务数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/**
* 打印线程池的状态
*
* @param threadPool 线程池对象
*/
public static void printThreadPoolStatus(ThreadPoolExecutor threadPool) {
ScheduledExecutorService scheduledExecutorService = new ScheduledThreadPoolExecutor(1, createThreadFactory("print-images/thread-pool-status", false));
scheduledExecutorService.scheduleAtFixedRate(() -> {
log.info("=========================");
log.info("ThreadPool Size: [{}]", threadPool.getPoolSize());
log.info("Active Threads: {}", threadPool.getActiveCount());
log.info("Number of Tasks : {}", threadPool.getCompletedTaskCount());
log.info("Number of Tasks in Queue: {}", threadPool.getQueue().size());
log.info("=========================");
}, 0, 1, TimeUnit.SECONDS);
}

3、建议不同类别的业务用不同的线程池

很多人在实际项目中都会有类似这样的问题:我的项目中多个业务需要用到线程池,是为每个线程池都定义一个还是说定义一个公共的线程池呢?

一般建议是不同的业务使用不同的线程池,配置线程池的时候根据当前业务的情况对当前线程池进行配置,因为不同的业务的并发以及对资源的使用情况都不同,重心优化系统性能瓶颈相关的业务。

我们再来看一个真实的事故案例! (本案例来源自:《线程池运用不当的一次线上事故》 ,很精彩的一个案例)

案例代码概览

上面的代码可能会存在死锁的情况,为什么呢?画个图给大家捋一捋。

试想这样一种极端情况:假如我们线程池的核心线程数为 n,父任务(扣费任务)数量为 n,父任务下面有两个子任务(扣费任务下的子任务),其中一个已经执行完成,另外一个被放在了任务队列中。由于父任务把线程池核心线程资源用完,所以子任务因为无法获取到线程资源无法正常执行,一直被阻塞在队列中。父任务等待子任务执行完成,而子任务等待父任务释放线程池资源,这也就造成了 “死锁” 。

线程池使用不当导致死锁

解决方法也很简单,就是新增加一个用于执行子任务的线程池专门为其服务。

4、别忘记给线程池命名

初始化线程池的时候需要显示命名(设置线程池名称前缀),有利于定位问题。

默认情况下创建的线程名字类似 pool-1-thread-n 这样的,没有业务含义,不利于我们定位问题。

给线程池里的线程命名通常有下面两种方式:

1、利用 guava 的 ThreadFactoryBuilder

1
2
3
4
ThreadFactory threadFactory = new ThreadFactoryBuilder()
.setNameFormat(threadNamePrefix + "-%d")
.setDaemon(true).build();
ExecutorService threadPool = new ThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime, TimeUnit.MINUTES, workQueue, threadFactory)

2、自己实现 ThreadFactory。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.atomic.AtomicInteger;

/**
* 线程工厂,它设置线程名称,有利于我们定位问题。
*/
public final class NamingThreadFactory implements ThreadFactory {

private final AtomicInteger threadNum = new AtomicInteger();
private final String name;

/**
* 创建一个带名字的线程池生产工厂
*/
public NamingThreadFactory(String name) {
this.name = name;
}

@Override
public Thread newThread(Runnable r) {
Thread t = new Thread(r);
t.setName(name + " [#" + threadNum.incrementAndGet() + "]");
return t;
}
}

5、正确配置线程池参数

说到如何给线程池配置参数,美团的骚操作至今让我难忘(后面会提到)!

我们先来看一下各种书籍和博客上一般推荐的配置线程池参数的方式,可以作为参考。

常规操作

很多人甚至可能都会觉得把线程池配置过大一点比较好!我觉得这明显是有问题的。就拿我们生活中非常常见的一例子来说:并不是人多就能把事情做好,增加了沟通交流成本。你本来一件事情只需要 3 个人做,你硬是拉来了 6 个人,会提升做事效率嘛?我想并不会。 线程数量过多的影响也是和我们分配多少人做事情一样,对于多线程这个场景来说主要是增加了上下文切换 成本。不清楚什么是上下文切换的话,可以看我下面的介绍。

上下文切换:

多线程编程中一般线程的个数都大于 CPU 核心的个数,而一个 CPU 核心在任意时刻只能被一个线程使用,为了让这些线程都能得到有效执行,CPU 采取的策略是为每个线程分配时间片并轮转的形式。当一个线程的时间片用完的时候就会重新处于就绪状态让给其他线程使用,这个过程就属于一次上下文切换。概括来说就是:当前任务在执行完 CPU 时间片切换到另一个任务之前会先保存自己的状态,以便下次再切换回这个任务时,可以再加载这个任务的状态。任务从保存到再加载的过程就是一次上下文切换。

上下文切换通常是计算密集型的。也就是说,它需要相当可观的处理器时间,在每秒几十上百次的切换中,每次切换都需要纳秒量级的时间。所以,上下文切换对系统来说意味着消耗大量的 CPU 时间,事实上,可能是操作系统中时间消耗最大的操作。

Linux 相比与其他操作系统(包括其他类 Unix 系统)有很多的优点,其中有一项就是,其上下文切换和模式切换的时间消耗非常少。

类比于现实世界中的人类通过合作做某件事情,我们可以肯定的一点是线程池大小设置过大或者过小都会有问题,合适的才是最好。

  • 如果我们设置的线程池数量太小的话,如果同一时间有大量任务/请求需要处理,可能会导致大量的请求/任务在任务队列中排队等待执行,甚至会出现任务队列满了之后任务/请求无法处理的情况,或者大量任务堆积在任务队列导致 OOM。这样很明显是有问题的,CPU 根本没有得到充分利用。
  • 如果我们设置线程数量太大,大量线程可能会同时在争取 CPU 资源,这样会导致大量的上下文切换,从而增加线程的执行时间,影响了整体执行效率。

有一个简单并且适用面比较广的公式:

  • CPU 密集型任务 (N): 这种任务消耗的主要是 CPU 资源,线程数应设置为 N(CPU 核心数)。由于任务主要瓶颈在于 CPU 计算能力,与核心数相等的线程数能够最大化 CPU 利用率,过多线程反而会导致竞争和上下文切换开销。
  • I/O 密集型任务(M * N): 这类任务大部分时间处理 I/O 交互,线程在等待 I/O 时不占用 CPU。 为了充分利用 CPU 资源,线程数可以设置为 M * N,其中 N 是 CPU 核心数,M 是一个大于 1 的倍数,建议默认设置为 2 ,具体取值取决于 I/O 等待时间和任务特点,需要通过测试和监控找到最佳平衡点。

CPU 密集型任务不再推荐 N+1,原因如下:

  • “N+1” 的初衷是希望预留线程处理突发暂停,但实际上,处理缺页中断等情况仍然需要占用 CPU 核心。
  • CPU 密集场景下,CPU 始终是瓶颈,预留线程并不能凭空增加 CPU 处理能力,反而可能加剧竞争。

如何判断是 CPU 密集任务还是 IO 密集任务?

CPU 密集型简单理解就是利用 CPU 计算能力的任务比如你在内存中对大量数据进行排序。但凡涉及到网络读取,文件读取这类都是 IO 密集型,这类任务的特点是 CPU 计算耗费时间相比于等待 IO 操作完成的时间来说很少,大部分时间都花在了等待 IO 操作完成上。

🌈 拓展一下(参见:issue#1737):

线程数更严谨的计算的方法应该是:最佳线程数 = N(CPU 核心数)∗(1+WT(线程等待时间)/ST(线程计算时间)),其中 WT(线程等待时间)=线程运行总时间 - ST(线程计算时间)。

线程等待时间所占比例越高,需要越多线程。线程计算时间所占比例越高,需要越少线程。

我们可以通过 JDK 自带的工具 VisualVM 来查看 WT/ST 比例。

CPU 密集型任务的 WT/ST 接近或者等于 0,因此, 线程数可以设置为 N(CPU 核心数)∗(1+0)= N,和我们上面说的 N(CPU 核心数)+1 差不多。

IO 密集型任务下,几乎全是线程等待时间,从理论上来说,你就可以将线程数设置为 2N(按道理来说,WT/ST 的结果应该比较大,这里选择 2N 的原因应该是为了避免创建过多线程吧)。

注意:上面提到的公示也只是参考,实际项目不太可能直接按照公式来设置线程池参数,毕竟不同的业务场景对应的需求不同,具体还是要根据项目实际线上运行情况来动态调整。接下来介绍的美团的线程池参数动态配置这种方案就非常不错,很实用!

美团的骚操作

美团技术团队在《Java 线程池实现原理及其在美团业务中的实践》这篇文章中介绍到对线程池参数实现可自定义配置的思路和方法。

美团技术团队的思路是主要对线程池的核心参数实现自定义可配置。这三个核心参数是:

  • corePoolSize : 核心线程数定义了最小可以同时运行的线程数量。
  • maximumPoolSize : 当队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。
  • workQueue: 当新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。

为什么是这三个参数?

我在这篇《新手也能看懂的线程池学习总结》 中就说过这三个参数是 ThreadPoolExecutor 最重要的参数,它们基本决定了线程池对于任务的处理策略。

如何支持参数动态配置? 且看 ThreadPoolExecutor 提供的下面这些方法。

格外需要注意的是corePoolSize, 程序运行期间的时候,我们调用 setCorePoolSize()这个方法的话,线程池会首先判断当前工作线程数是否大于corePoolSize,如果大于的话就会回收工作线程。

另外,你也看到了上面并没有动态指定队列长度的方法,美团的方式是自定义了一个叫做 ResizableCapacityLinkedBlockIngQueue 的队列(主要就是把LinkedBlockingQueue的 capacity 字段的 final 关键字修饰给去掉了,让它变为可变的)。

最终实现的可动态修改线程池参数效果如下。👏👏👏

动态配置线程池参数最终效果

如果我们的项目也想要实现这种效果的话,可以借助现成的开源项目:

  • **Hippo4j**:异步线程池框架,支持线程池动态变更&监控&报警,无需修改代码轻松引入。支持多种使用模式,轻松引入,致力于提高系统运行保障能力。
  • **Dynamic TP**:轻量级动态线程池,内置监控告警功能,集成三方中间件线程池管理,基于主流配置中心(已支持 Nacos、Apollo,Zookeeper、Consul、Etcd,可通过 SPI 自定义实现)。

6、别忘记关闭线程池

当线程池不再需要使用时,应该显式地关闭线程池,释放线程资源。

线程池提供了两个关闭方法:

  • shutdown() :关闭线程池,线程池的状态变为 SHUTDOWN。线程池不再接受新任务了,但是队列里的任务得执行完毕。
  • shutdownNow() :关闭线程池,线程池的状态变为 STOP。线程池会终止当前正在运行的任务,停止处理排队的任务并返回正在等待执行的 List。

调用完 shutdownNow 和 shuwdown 方法后,并不代表线程池已经完成关闭操作,它只是异步的通知线程池进行关闭处理。如果要同步等待线程池彻底关闭后才继续往下执行,需要调用awaitTermination方法进行同步等待。

在调用 awaitTermination() 方法时,应该设置合理的超时时间,以避免程序长时间阻塞而导致性能问题。另外。由于线程池中的任务可能会被取消或抛出异常,因此在使用 awaitTermination() 方法时还需要进行异常处理。awaitTermination() 方法会抛出 InterruptedException 异常,需要捕获并处理该异常,以避免程序崩溃或者无法正常退出。

1
2
3
4
5
6
7
8
9
10
11
12
// ...
// 关闭线程池
executor.shutdown();
try {
// 等待线程池关闭,最多等待5分钟
if (!executor.awaitTermination(5, TimeUnit.MINUTES)) {
// 如果等待超时,则打印日志
System.err.println("线程池未能在5分钟内完全关闭");
}
} catch (InterruptedException e) {
// 异常处理
}

7、线程池尽量不要放耗时任务

线程池本身的目的是为了提高任务执行效率,避免因频繁创建和销毁线程而带来的性能开销。如果将耗时任务提交到线程池中执行,可能会导致线程池中的线程被长时间占用,无法及时响应其他任务,甚至会导致线程池崩溃或者程序假死。

因此,在使用线程池时,我们应该尽量避免将耗时任务提交到线程池中执行。对于一些比较耗时的操作,如网络请求、文件读写等,可以采用 CompletableFuture 等其他异步操作的方式来处理,以避免阻塞线程池中的线程。

8、线程池使用的一些小坑

重复创建线程池的坑

线程池是可以复用的,一定不要频繁创建线程池比如一个用户请求到了就单独创建一个线程池。

1
2
3
4
5
6
7
8
9
10
11
@GetMapping("wrong")
public String wrong() throws InterruptedException {
// 自定义线程池
ThreadPoolExecutor executor = new ThreadPoolExecutor(5,10,1L,TimeUnit.SECONDS,new ArrayBlockingQueue<>(100),new ThreadPoolExecutor.CallerRunsPolicy());

// 处理任务
executor.execute(() -> {
// ......
}
return "OK";
}

出现这种问题的原因还是对于线程池认识不够,需要加强线程池的基础知识。

Spring 内部线程池的坑

使用 Spring 内部线程池时,一定要手动自定义线程池,配置合理的参数,不然会出现生产问题(一个请求创建一个线程)。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
@Configuration
@EnableAsync
public class ThreadPoolExecutorConfig {

@Bean(name="threadPoolExecutor")
public Executor threadPoolExecutor(){
ThreadPoolTaskExecutor threadPoolExecutor = new ThreadPoolTaskExecutor();
int processNum = Runtime.getRuntime().availableProcessors(); // 返回可用处理器的Java虚拟机的数量
int corePoolSize = (int) (processNum / (1 - 0.2));
int maxPoolSize = (int) (processNum / (1 - 0.5));
threadPoolExecutor.setCorePoolSize(corePoolSize); // 核心池大小
threadPoolExecutor.setMaxPoolSize(maxPoolSize); // 最大线程数
threadPoolExecutor.setQueueCapacity(maxPoolSize * 1000); // 队列程度
threadPoolExecutor.setThreadPriority(Thread.MAX_PRIORITY);
threadPoolExecutor.setDaemon(false);
threadPoolExecutor.setKeepAliveSeconds(300);// 线程空闲时间
threadPoolExecutor.setThreadNamePrefix("test-Executor-"); // 线程名字前缀
return threadPoolExecutor;
}
}

线程池和 ThreadLocal 共用的坑

线程池和 ThreadLocal共用,可能会导致线程从ThreadLocal获取到的是旧值/脏数据。这是因为线程池会复用线程对象,与线程对象绑定的类的静态属性 ThreadLocal 变量也会被重用,这就导致一个线程可能获取到其他线程的ThreadLocal 值。

不要以为代码中没有显示使用线程池就不存在线程池了,像常用的 Web 服务器 Tomcat 处理任务为了提高并发量,就使用到了线程池,并且使用的是基于原生 Java 线程池改进完善得到的自定义线程池。

当然了,你可以将 Tomcat 设置为单线程处理任务。不过,这并不合适,会严重影响其处理任务的速度。

1
server.tomcat.max-threads=1

解决上述问题比较建议的办法是使用阿里巴巴开源的 TransmittableThreadLocal(TTL)。TransmittableThreadLocal类继承并加强了 JDK 内置的InheritableThreadLocal类,在使用线程池等会池化复用线程的执行组件情况下,提供ThreadLocal值的传递功能,解决异步执行时上下文传递的问题。

TransmittableThreadLocal 项目地址:https://github.com/alibaba/transmittable-thread-local 。

3种常用的缓存读写策略详解

发表于 2023-03-24 | 分类于 分布式 , redis | 阅读次数:
字数统计: 1.6k 字 | 阅读时长 ≈ 5 分钟

看到很多小伙伴简历上写了“熟练使用缓存”,但是被我问到“缓存常用的 3 种读写策略”的时候却一脸懵逼。

在我看来,造成这个问题的原因是我们在学习 Redis 的时候,可能只是简单写了一些 Demo,并没有去关注缓存的读写策略,或者说压根不知道这回事。

但是,搞懂 3 种常见的缓存读写策略对于实际工作中使用缓存以及面试中被问到缓存都是非常有帮助的!

下面介绍到的三种模式各有优劣,不存在最佳模式,根据具体的业务场景选择适合自己的缓存读写模式。

Cache Aside Pattern(旁路缓存模式)

Cache Aside Pattern 是我们平时使用比较多的一个缓存读写模式,比较适合读请求比较多的场景。

Cache Aside Pattern 中服务端需要同时维系 db 和 cache,并且是以 db 的结果为准。

下面我们来看一下这个策略模式下的缓存读写步骤。

写:

  • 先更新 db
  • 然后直接删除 cache 。

简单画了一张图帮助大家理解写的步骤。

读 :

  • 从 cache 中读取数据,读取到就直接返回
  • cache 中读取不到的话,就从 db 中读取数据返回
  • 再把数据放到 cache 中。

简单画了一张图帮助大家理解读的步骤。

你仅仅了解了上面这些内容的话是远远不够的,我们还要搞懂其中的原理。

比如说面试官很可能会追问:“在写数据的过程中,可以先删除 cache ,后更新 db 么?”

答案: 那肯定是不行的!因为这样可能会造成 数据库(db)和缓存(Cache)数据不一致的问题。

举例:请求 1 先写数据 A,请求 2 随后读数据 A 的话,就很有可能产生数据不一致性的问题。

这个过程可以简单描述为:

请求 1 先把 cache 中的 A 数据删除 -> 请求 2 从 db 中读取数据->请求 1 再把 db 中的 A 数据更新

当你这样回答之后,面试官可能会紧接着就追问:“在写数据的过程中,先更新 db,后删除 cache 就没有问题了么?”

答案: 理论上来说还是可能会出现数据不一致性的问题,不过概率非常小,因为缓存的写入速度是比数据库的写入速度快很多。

举例:请求 1 先读数据 A,请求 2 随后写数据 A,并且数据 A 在请求 1 请求之前不在缓存中的话,也有可能产生数据不一致性的问题。

这个过程可以简单描述为:

请求 1 从 db 读数据 A-> 请求 2 更新 db 中的数据 A(此时缓存中无数据 A ,故不用执行删除缓存操作 ) -> 请求 1 将数据 A 写入 cache

现在我们再来分析一下 Cache Aside Pattern 的缺陷。

缺陷 1:首次请求数据一定不在 cache 的问题

解决办法:可以将热点数据可以提前放入 cache 中。

缺陷 2:写操作比较频繁的话导致 cache 中的数据会被频繁被删除,这样会影响缓存命中率 。

解决办法:

  • 数据库和缓存数据强一致场景:更新 db 的时候同样更新 cache,不过我们需要加一个锁/分布式锁来保证更新 cache 的时候不存在线程安全问题。
  • 可以短暂地允许数据库和缓存数据不一致的场景:更新 db 的时候同样更新 cache,但是给缓存加一个比较短的过期时间,这样的话就可以保证即使数据不一致的话影响也比较小。

Read/Write Through Pattern(读写穿透)

Read/Write Through Pattern 中服务端把 cache 视为主要数据存储,从中读取数据并将数据写入其中。cache 服务负责将此数据读取和写入 db,从而减轻了应用程序的职责。

这种缓存读写策略小伙伴们应该也发现了在平时在开发过程中非常少见。抛去性能方面的影响,大概率是因为我们经常使用的分布式缓存 Redis 并没有提供 cache 将数据写入 db 的功能。

写(Write Through):

  • 先查 cache,cache 中不存在,直接更新 db。
  • cache 中存在,则先更新 cache,然后 cache 服务自己更新 db(同步更新 cache 和 db)。

简单画了一张图帮助大家理解写的步骤。

读(Read Through):

  • 从 cache 中读取数据,读取到就直接返回 。
  • 读取不到的话,先从 db 加载,写入到 cache 后返回响应。

简单画了一张图帮助大家理解读的步骤。

Read-Through Pattern 实际只是在 Cache-Aside Pattern 之上进行了封装。在 Cache-Aside Pattern 下,发生读请求的时候,如果 cache 中不存在对应的数据,是由客户端自己负责把数据写入 cache,而 Read Through Pattern 则是 cache 服务自己来写入缓存的,这对客户端是透明的。

和 Cache Aside Pattern 一样, Read-Through Pattern 也有首次请求数据一定不再 cache 的问题,对于热点数据可以提前放入缓存中。

Write Behind Pattern(异步缓存写入)

Write Behind Pattern 和 Read/Write Through Pattern 很相似,两者都是由 cache 服务来负责 cache 和 db 的读写。

但是,两个又有很大的不同:Read/Write Through 是同步更新 cache 和 db,而 Write Behind 则是只更新缓存,不直接更新 db,而是改为异步批量的方式来更新 db。

很明显,这种方式对数据一致性带来了更大的挑战,比如 cache 数据可能还没异步更新 db 的话,cache 服务可能就就挂掉了。

这种策略在我们平时开发过程中也非常非常少见,但是不代表它的应用场景少,比如消息队列中消息的异步写入磁盘、MySQL 的 Innodb Buffer Pool 机制都用到了这种策略。

Write Behind Pattern 下 db 的写性能非常高,非常适合一些数据经常变化又对数据一致性要求没那么高的场景,比如浏览量、点赞量。

Spring&SpringBoot常用注解总结

发表于 2023-03-16 | 分类于 Java , 框架 , spring | 阅读次数:
字数统计: 5.9k 字 | 阅读时长 ≈ 25 分钟

0.前言

可以毫不夸张地说,这篇文章介绍的 Spring/SpringBoot 常用注解基本已经涵盖你工作中遇到的大部分常用的场景。对于每一个注解我都说了具体用法,掌握搞懂,使用 SpringBoot 来开发项目基本没啥大问题了!

为什么要写这篇文章?

最近看到网上有一篇关于 SpringBoot 常用注解的文章被转载的比较多,我看了文章内容之后属实觉得质量有点低,并且有点会误导没有太多实际使用经验的人(这些人又占据了大多数)。所以,自己索性花了大概 两天时间简单总结一下了。

因为我个人的能力和精力有限,如果有任何不对或者需要完善的地方,请帮忙指出!Guide 感激不尽!

1. @SpringBootApplication

这里先单独拎出@SpringBootApplication 注解说一下,虽然我们一般不会主动去使用它。

Guide:这个注解是 Spring Boot 项目的基石,创建 SpringBoot 项目之后会默认在主类加上。

1
2
3
4
5
6
@SpringBootApplication
public class SpringSecurityJwtGuideApplication {
public static void main(java.lang.String[] args) {
SpringApplication.run(SpringSecurityJwtGuideApplication.class, args);
}
}

我们可以把 @SpringBootApplication看作是 @Configuration、@EnableAutoConfiguration、@ComponentScan 注解的集合。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
package org.springframework.boot.autoconfigure;
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Inherited
@SpringBootConfiguration
@EnableAutoConfiguration
@ComponentScan(excludeFilters = {
@Filter(type = FilterType.CUSTOM, classes = TypeExcludeFilter.class),
@Filter(type = FilterType.CUSTOM, classes = AutoConfigurationExcludeFilter.class) })
public @interface SpringBootApplication {
......
}

package org.springframework.boot;
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Configuration
public @interface SpringBootConfiguration {

}

根据 SpringBoot 官网,这三个注解的作用分别是:

  • @EnableAutoConfiguration:启用 SpringBoot 的自动配置机制
  • @ComponentScan:扫描被@Component (@Repository,@Service,@Controller)注解的 bean,注解默认会扫描该类所在的包下所有的类。
  • @Configuration:允许在 Spring 上下文中注册额外的 bean 或导入其他配置类

2. Spring Bean 相关

2.1. @Autowired

自动导入对象到类中,被注入进的类同样要被 Spring 容器管理比如:Service 类注入到 Controller 类中。

1
2
3
4
5
6
7
8
9
10
11
12
@Service
public class UserService {
......
}

@RestController
@RequestMapping("/users")
public class UserController {
@Autowired
private UserService userService;
......
}

2.2. @Component,@Repository,@Service, @Controller

我们一般使用 @Autowired 注解让 Spring 容器帮我们自动装配 bean。要想把类标识成可用于 @Autowired 注解自动装配的 bean 的类,可以采用以下注解实现:

  • @Component:通用的注解,可标注任意类为 Spring 组件。如果一个 Bean 不知道属于哪个层,可以使用@Component 注解标注。
  • @Repository : 对应持久层即 Dao 层,主要用于数据库相关操作。
  • @Service : 对应服务层,主要涉及一些复杂的逻辑,需要用到 Dao 层。
  • @Controller : 对应 Spring MVC 控制层,主要用于接受用户请求并调用 Service 层返回数据给前端页面。

2.3. @RestController

@RestController注解是@Controller和@ResponseBody的合集,表示这是个控制器 bean,并且是将函数的返回值直接填入 HTTP 响应体中,是 REST 风格的控制器。

Guide:现在都是前后端分离,说实话我已经很久没有用过@Controller。如果你的项目太老了的话,就当我没说。

单独使用 @Controller 不加 @ResponseBody的话一般是用在要返回一个视图的情况,这种情况属于比较传统的 Spring MVC 的应用,对应于前后端不分离的情况。@Controller +@ResponseBody 返回 JSON 或 XML 形式数据

关于@RestController 和 @Controller的对比,请看这篇文章:@RestController vs @Controller。

2.4. @Scope

声明 Spring Bean 的作用域,使用方法:

1
2
3
4
5
@Bean
@Scope("singleton")
public Person personSingleton() {
return new Person();
}

四种常见的 Spring Bean 的作用域:

  • singleton : 唯一 bean 实例,Spring 中的 bean 默认都是单例的。
  • prototype : 每次请求都会创建一个新的 bean 实例。
  • request : 每一次 HTTP 请求都会产生一个新的 bean,该 bean 仅在当前 HTTP request 内有效。
  • session : 每一个 HTTP Session 会产生一个新的 bean,该 bean 仅在当前 HTTP session 内有效。

2.5. @Configuration

一般用来声明配置类,可以使用 @Component注解替代,不过使用@Configuration注解声明配置类更加语义化。

1
2
3
4
5
6
7
8
@Configuration
public class AppConfig {
@Bean
public TransferService transferService() {
return new TransferServiceImpl();
}

}

3. 处理常见的 HTTP 请求类型

5 种常见的请求类型:

  • GET:请求从服务器获取特定资源。举个例子:GET /users(获取所有学生)
  • POST:在服务器上创建一个新的资源。举个例子:POST /users(创建学生)
  • PUT:更新服务器上的资源(客户端提供更新后的整个资源)。举个例子:PUT /users/12(更新编号为 12 的学生)
  • DELETE:从服务器删除特定的资源。举个例子:DELETE /users/12(删除编号为 12 的学生)
  • PATCH:更新服务器上的资源(客户端提供更改的属性,可以看做作是部分更新),使用的比较少,这里就不举例子了。

3.1. GET 请求

@GetMapping("users") 等价于@RequestMapping(value="/users",method=RequestMethod.GET)

1
2
3
4
@GetMapping("/users")
public ResponseEntity<List<User>> getAllUsers() {
return userRepository.findAll();
}

3.2. POST 请求

@PostMapping("users") 等价于@RequestMapping(value="/users",method=RequestMethod.POST)

关于@RequestBody注解的使用,在下面的“前后端传值”这块会讲到。

1
2
3
4
@PostMapping("/users")
public ResponseEntity<User> createUser(@Valid @RequestBody UserCreateRequest userCreateRequest) {
return userRepository.save(userCreateRequest);
}

3.3. PUT 请求

@PutMapping("/users/{userId}") 等价于@RequestMapping(value="/users/{userId}",method=RequestMethod.PUT)

1
2
3
4
5
@PutMapping("/users/{userId}")
public ResponseEntity<User> updateUser(@PathVariable(value = "userId") Long userId,
@Valid @RequestBody UserUpdateRequest userUpdateRequest) {
......
}

3.4. DELETE 请求

@DeleteMapping("/users/{userId}")等价于@RequestMapping(value="/users/{userId}",method=RequestMethod.DELETE)

1
2
3
4
@DeleteMapping("/users/{userId}")
public ResponseEntity deleteUser(@PathVariable(value = "userId") Long userId){
......
}

3.5. PATCH 请求

一般实际项目中,我们都是 PUT 不够用了之后才用 PATCH 请求去更新数据。

1
2
3
4
5
@PatchMapping("/profile")
public ResponseEntity updateStudent(@RequestBody StudentUpdateRequest studentUpdateRequest) {
studentRepository.updateDetail(studentUpdateRequest);
return ResponseEntity.ok().build();
}

4. 前后端传值

掌握前后端传值的正确姿势,是你开始 CRUD 的第一步!

4.1. @PathVariable 和 @RequestParam

@PathVariable用于获取路径参数,@RequestParam用于获取查询参数。

举个简单的例子:

1
2
3
4
5
6
@GetMapping("/klasses/{klassId}/teachers")
public List<Teacher> getKlassRelatedTeachers(
@PathVariable("klassId") Long klassId,
@RequestParam(value = "type", required = false) String type ) {
...
}

如果我们请求的 url 是:/klasses/123456/teachers?type=web

那么我们服务获取到的数据就是:klassId=123456,type=web。

4.2. @RequestBody

用于读取 Request 请求(可能是 POST,PUT,DELETE,GET 请求)的 body 部分并且Content-Type 为 application/json 格式的数据,接收到数据之后会自动将数据绑定到 Java 对象上去。系统会使用HttpMessageConverter或者自定义的HttpMessageConverter将请求的 body 中的 json 字符串转换为 java 对象。

我用一个简单的例子来给演示一下基本使用!

我们有一个注册的接口:

1
2
3
4
5
@PostMapping("/sign-up")
public ResponseEntity signUp(@RequestBody @Valid UserRegisterRequest userRegisterRequest) {
userService.save(userRegisterRequest);
return ResponseEntity.ok().build();
}

UserRegisterRequest对象:

1
2
3
4
5
6
7
8
9
10
11
@Data
@AllArgsConstructor
@NoArgsConstructor
public class UserRegisterRequest {
@NotBlank
private String userName;
@NotBlank
private String password;
@NotBlank
private String fullName;
}

我们发送 post 请求到这个接口,并且 body 携带 JSON 数据:

1
{ "userName": "coder", "fullName": "shuangkou", "password": "123456" }

这样我们的后端就可以直接把 json 格式的数据映射到我们的 UserRegisterRequest 类上。

👉 需要注意的是:**一个请求方法只可以有一个@RequestBody,但是可以有多个@RequestParam和@PathVariable**。 如果你的方法必须要用两个 @RequestBody来接受数据的话,大概率是你的数据库设计或者系统设计出问题了!

5. 读取配置信息

很多时候我们需要将一些常用的配置信息比如阿里云 oss、发送短信、微信认证的相关配置信息等等放到配置文件中。

下面我们来看一下 Spring 为我们提供了哪些方式帮助我们从配置文件中读取这些配置信息。

我们的数据源application.yml内容如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
wuhan2020: 2020年初武汉爆发了新型冠状病毒,疫情严重,但是,我相信一切都会过去!武汉加油!中国加油!

my-profile:
name: Guide哥
email: koushuangbwcx@163.com

library:
location: 湖北武汉加油中国加油
books:
- name: 天才基本法
description: 二十二岁的林朝夕在父亲确诊阿尔茨海默病这天,得知自己暗恋多年的校园男神裴之即将出国深造的消息——对方考取的学校,恰是父亲当年为她放弃的那所。
- name: 时间的秩序
description: 为什么我们记得过去,而非未来?时间“流逝”意味着什么?是我们存在于时间之内,还是时间存在于我们之中?卡洛·罗韦利用诗意的文字,邀请我们思考这一亘古难题——时间的本质。
- name: 了不起的我
description: 如何养成一个新习惯?如何让心智变得更成熟?如何拥有高质量的关系? 如何走出人生的艰难时刻?

5.1. @Value(常用)

使用 @Value("${property}") 读取比较简单的配置信息:

1
2
@Value("${wuhan2020}")
String wuhan2020;

5.2. @ConfigurationProperties(常用)

通过@ConfigurationProperties读取配置信息并与 bean 绑定。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
@Component
@ConfigurationProperties(prefix = "library")
class LibraryProperties {
@NotEmpty
private String location;
private List<Book> books;

@Setter
@Getter
@ToString
static class Book {
String name;
String description;
}
省略getter/setter
......
}

你可以像使用普通的 Spring bean 一样,将其注入到类中使用。

5.3. @PropertySource(不常用)

@PropertySource读取指定 properties 文件

1
2
3
4
5
6
7
8
9
10
@Component
@PropertySource("classpath:website.properties")

class WebSite {
@Value("${url}")
private String url;

省略getter/setter
......
}

更多内容请查看我的这篇文章:《10 分钟搞定 SpringBoot 如何优雅读取配置文件?》 。

6. 参数校验

数据的校验的重要性就不用说了,即使在前端对数据进行校验的情况下,我们还是要对传入后端的数据再进行一遍校验,避免用户绕过浏览器直接通过一些 HTTP 工具直接向后端请求一些违法数据。

Bean Validation 是一套定义 JavaBean 参数校验标准的规范 (JSR 303, 349, 380),它提供了一系列注解,可以直接用于 JavaBean 的属性上,从而实现便捷的参数校验。

  • JSR 303 (Bean Validation 1.0): 奠定了基础,引入了核心校验注解(如 @NotNull、@Size、@Min、@Max 等),定义了如何通过注解的方式对 JavaBean 的属性进行校验,并支持嵌套对象校验和自定义校验器。
  • JSR 349 (Bean Validation 1.1): 在 1.0 基础上进行扩展,例如引入了对方法参数和返回值校验的支持、增强了对分组校验(Group Validation)的处理。
  • JSR 380 (Bean Validation 2.0): 拥抱 Java 8 的新特性,并进行了一些改进,例如支持 java.time 包中的日期和时间类型、引入了一些新的校验注解(如 @NotEmpty, @NotBlank等)。

校验的时候我们实际用的是 Hibernate Validator 框架。Hibernate Validator 是 Hibernate 团队最初的数据校验框架,Hibernate Validator 4.x 是 Bean Validation 1.0(JSR 303)的参考实现,Hibernate Validator 5.x 是 Bean Validation 1.1(JSR 349)的参考实现,目前最新版的 Hibernate Validator 6.x 是 Bean Validation 2.0(JSR 380)的参考实现。

SpringBoot 项目的 spring-boot-starter-web 依赖中已经有 hibernate-validator 包,不需要引用相关依赖。如下图所示(通过 idea 插件—Maven Helper 生成):

注:更新版本的 spring-boot-starter-web 依赖中不再有 hibernate-validator 包(如 2.3.11.RELEASE),需要自己引入 spring-boot-starter-validation 依赖。

非 SpringBoot 项目需要自行引入相关依赖包,这里不多做讲解,具体可以查看我的这篇文章:《如何在 Spring/Spring Boot 中做参数校验?你需要了解的都在这里!》。

👉 需要注意的是:所有的注解,推荐使用 JSR 注解,即javax.validation.constraints,而不是org.hibernate.validator.constraints

6.1. 一些常用的字段验证的注解

  • @NotEmpty 被注释的字符串的不能为 null 也不能为空
  • @NotBlank 被注释的字符串非 null,并且必须包含一个非空白字符
  • @Null 被注释的元素必须为 null
  • @NotNull 被注释的元素必须不为 null
  • @AssertTrue 被注释的元素必须为 true
  • @AssertFalse 被注释的元素必须为 false
  • @Pattern(regex=,flag=)被注释的元素必须符合指定的正则表达式
  • @Email 被注释的元素必须是 Email 格式。
  • @Min(value)被注释的元素必须是一个数字,其值必须大于等于指定的最小值
  • @Max(value)被注释的元素必须是一个数字,其值必须小于等于指定的最大值
  • @DecimalMin(value)被注释的元素必须是一个数字,其值必须大于等于指定的最小值
  • @DecimalMax(value) 被注释的元素必须是一个数字,其值必须小于等于指定的最大值
  • @Size(max=, min=)被注释的元素的大小必须在指定的范围内
  • @Digits(integer, fraction)被注释的元素必须是一个数字,其值必须在可接受的范围内
  • @Past被注释的元素必须是一个过去的日期
  • @Future 被注释的元素必须是一个将来的日期
  • ……

6.2. 验证请求体(RequestBody)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
@Data
@AllArgsConstructor
@NoArgsConstructor
public class Person {

@NotNull(message = "classId 不能为空")
private String classId;

@Size(max = 33)
@NotNull(message = "name 不能为空")
private String name;

@Pattern(regexp = "((^Man$|^Woman$|^UGM$))", message = "sex 值不在可选范围")
@NotNull(message = "sex 不能为空")
private String sex;

@Email(message = "email 格式不正确")
@NotNull(message = "email 不能为空")
private String email;

}

我们在需要验证的参数上加上了@Valid注解,如果验证失败,它将抛出MethodArgumentNotValidException。

1
2
3
4
5
6
7
8
9
@RestController
@RequestMapping("/api")
public class PersonController {

@PostMapping("/person")
public ResponseEntity<Person> getPerson(@RequestBody @Valid Person person) {
return ResponseEntity.ok().body(person);
}
}

6.3. 验证请求参数(Path Variables 和 Request Parameters)

一定一定不要忘记在类上加上 @Validated 注解了,这个参数可以告诉 Spring 去校验方法参数。

1
2
3
4
5
6
7
8
9
10
@RestController
@RequestMapping("/api")
@Validated
public class PersonController {

@GetMapping("/person/{id}")
public ResponseEntity<Integer> getPersonByID(@Valid @PathVariable("id") @Max(value = 5,message = "超过 id 的范围了") Integer id) {
return ResponseEntity.ok().body(id);
}
}

更多关于如何在 Spring 项目中进行参数校验的内容,请看《如何在 Spring/Spring Boot 中做参数校验?你需要了解的都在这里!》这篇文章。

7. 全局处理 Controller 层异常

介绍一下我们 Spring 项目必备的全局处理 Controller 层异常。

相关注解:

  1. @ControllerAdvice :注解定义全局异常处理类
  2. @ExceptionHandler :注解声明异常处理方法

如何使用呢?拿我们在第 5 节参数校验这块来举例子。如果方法参数不对的话就会抛出MethodArgumentNotValidException,我们来处理这个异常。

1
2
3
4
5
6
7
8
9
10
11
12
@ControllerAdvice
@ResponseBody
public class GlobalExceptionHandler {

/**
* 请求参数异常处理
*/
@ExceptionHandler(MethodArgumentNotValidException.class)
public ResponseEntity<?> handleMethodArgumentNotValidException(MethodArgumentNotValidException ex, HttpServletRequest request) {
......
}
}

更多关于 Spring Boot 异常处理的内容,请看我的这两篇文章:

  1. SpringBoot 处理异常的几种常见姿势
  2. 使用枚举简单封装一个优雅的 Spring Boot 全局异常处理!

8. JPA 相关

8.1. 创建表

@Entity声明一个类对应一个数据库实体。

@Table 设置表名

1
2
3
4
5
6
7
8
9
10
@Entity
@Table(name = "role")
public class Role {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
private String name;
private String description;
省略getter/setter......
}

8.2. 创建主键

@Id:声明一个字段为主键。

使用@Id声明之后,我们还需要定义主键的生成策略。我们可以使用 @GeneratedValue 指定主键生成策略。

1.通过 @GeneratedValue直接使用 JPA 内置提供的四种主键生成策略来指定主键生成策略。

1
2
3
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

JPA 使用枚举定义了 4 种常见的主键生成策略,如下:

Guide:枚举替代常量的一种用法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
public enum GenerationType {

/**
* 使用一个特定的数据库表格来保存主键
* 持久化引擎通过关系数据库的一张特定的表格来生成主键,
*/
TABLE,

/**
*在某些数据库中,不支持主键自增长,比如Oracle、PostgreSQL其提供了一种叫做"序列(sequence)"的机制生成主键
*/
SEQUENCE,

/**
* 主键自增长
*/
IDENTITY,

/**
*把主键生成策略交给持久化引擎(persistence engine),
*持久化引擎会根据数据库在以上三种主键生成 策略中选择其中一种
*/
AUTO
}

@GeneratedValue注解默认使用的策略是GenerationType.AUTO

1
2
3
4
5
public @interface GeneratedValue {

GenerationType strategy() default AUTO;
String generator() default "";
}

一般使用 MySQL 数据库的话,使用GenerationType.IDENTITY策略比较普遍一点(分布式系统的话需要另外考虑使用分布式 ID)。

2.通过 @GenericGenerator声明一个主键策略,然后 @GeneratedValue使用这个策略

1
2
3
4
@Id
@GeneratedValue(generator = "IdentityIdGenerator")
@GenericGenerator(name = "IdentityIdGenerator", strategy = "identity")
private Long id;

等价于:

1
2
3
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

jpa 提供的主键生成策略有如下几种:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
public class DefaultIdentifierGeneratorFactory
implements MutableIdentifierGeneratorFactory, Serializable, ServiceRegistryAwareService {

@SuppressWarnings("deprecation")
public DefaultIdentifierGeneratorFactory() {
register( "uuid2", UUIDGenerator.class );
register( "guid", GUIDGenerator.class ); // can be done with UUIDGenerator + strategy
register( "uuid", UUIDHexGenerator.class ); // "deprecated" for new use
register( "uuid.hex", UUIDHexGenerator.class ); // uuid.hex is deprecated
register( "assigned", Assigned.class );
register( "identity", IdentityGenerator.class );
register( "select", SelectGenerator.class );
register( "sequence", SequenceStyleGenerator.class );
register( "seqhilo", SequenceHiLoGenerator.class );
register( "increment", IncrementGenerator.class );
register( "foreign", ForeignGenerator.class );
register( "sequence-identity", SequenceIdentityGenerator.class );
register( "enhanced-sequence", SequenceStyleGenerator.class );
register( "enhanced-table", TableGenerator.class );
}

public void register(String strategy, Class generatorClass) {
LOG.debugf( "Registering IdentifierGenerator strategy [%s] -> [%s]", strategy, generatorClass.getName() );
final Class previous = generatorStrategyToClassNameMap.put( strategy, generatorClass );
if ( previous != null ) {
LOG.debugf( " - overriding [%s]", previous.getName() );
}
}

}

8.3. 设置字段类型

@Column 声明字段。

示例:

设置属性 userName 对应的数据库字段名为 user_name,长度为 32,非空

1
2
@Column(name = "user_name", nullable = false, length=32)
private String userName;

设置字段类型并且加默认值,这个还是挺常用的。

1
2
@Column(columnDefinition = "tinyint(1) default 1")
private Boolean enabled;

8.4. 指定不持久化特定字段

@Transient:声明不需要与数据库映射的字段,在保存的时候不需要保存进数据库 。

如果我们想让secrect 这个字段不被持久化,可以使用 @Transient关键字声明。

1
2
3
4
5
6
7
8
@Entity(name="USER")
public class User {

......
@Transient
private String secrect; // not persistent because of @Transient

}

除了 @Transient关键字声明, 还可以采用下面几种方法:

1
2
3
static String secrect; // not persistent because of static
final String secrect = "Satish"; // not persistent because of final
transient String secrect; // not persistent because of transient

一般使用注解的方式比较多。

8.5. 声明大字段

@Lob:声明某个字段为大字段。

1
2
@Lob
private String content;

更详细的声明:

1
2
3
4
5
6
@Lob
//指定 Lob 类型数据的获取策略, FetchType.EAGER 表示非延迟加载,而 FetchType.LAZY 表示延迟加载 ;
@Basic(fetch = FetchType.EAGER)
//columnDefinition 属性指定数据表对应的 Lob 字段类型
@Column(name = "content", columnDefinition = "LONGTEXT NOT NULL")
private String content;

8.6. 创建枚举类型的字段

可以使用枚举类型的字段,不过枚举字段要用@Enumerated注解修饰。

1
2
3
4
5
6
7
8
9
public enum Gender {
MALE("男性"),
FEMALE("女性");

private String value;
Gender(String str){
value=str;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
@Entity
@Table(name = "role")
public class Role {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
private String name;
private String description;
@Enumerated(EnumType.STRING)
private Gender gender;
省略getter/setter......
}

数据库里面对应存储的是 MALE/FEMALE。

8.7. 增加审计功能

只要继承了 AbstractAuditBase的类都会默认加上下面四个字段。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
@Data
@AllArgsConstructor
@NoArgsConstructor
@MappedSuperclass
@EntityListeners(value = AuditingEntityListener.class)
public abstract class AbstractAuditBase {

@CreatedDate
@Column(updatable = false)
@JsonIgnore
private Instant createdAt;

@LastModifiedDate
@JsonIgnore
private Instant updatedAt;

@CreatedBy
@Column(updatable = false)
@JsonIgnore
private String createdBy;

@LastModifiedBy
@JsonIgnore
private String updatedBy;
}

我们对应的审计功能对应地配置类可能是下面这样的(Spring Security 项目):

1
2
3
4
5
6
7
8
9
10
11
12

@Configuration
@EnableJpaAuditing
public class AuditSecurityConfiguration {
@Bean
AuditorAware<String> auditorAware() {
return () -> Optional.ofNullable(SecurityContextHolder.getContext())
.map(SecurityContext::getAuthentication)
.filter(Authentication::isAuthenticated)
.map(Authentication::getName);
}
}

简单介绍一下上面涉及到的一些注解:

  1. @CreatedDate: 表示该字段为创建时间字段,在这个实体被 insert 的时候,会设置值

  2. @CreatedBy :表示该字段为创建人,在这个实体被 insert 的时候,会设置值

    @LastModifiedDate、@LastModifiedBy同理。

@EnableJpaAuditing:开启 JPA 审计功能。

8.8. 删除/修改数据

@Modifying 注解提示 JPA 该操作是修改操作,注意还要配合@Transactional注解使用。

1
2
3
4
5
6
7
@Repository
public interface UserRepository extends JpaRepository<User, Integer> {

@Modifying
@Transactional(rollbackFor = Exception.class)
void deleteByUserName(String userName);
}

8.9. 关联关系

  • @OneToOne 声明一对一关系
  • @OneToMany 声明一对多关系
  • @ManyToOne 声明多对一关系
  • @ManyToMany 声明多对多关系

更多关于 Spring Boot JPA 的文章请看我的这篇文章:一文搞懂如何在 Spring Boot 正确中使用 JPA 。

9. 事务 @Transactional

在要开启事务的方法上使用@Transactional注解即可!

1
2
3
4
5
@Transactional(rollbackFor = Exception.class)
public void save() {
......
}

我们知道 Exception 分为运行时异常 RuntimeException 和非运行时异常。在@Transactional注解中如果不配置rollbackFor属性,那么事务只会在遇到RuntimeException的时候才会回滚,加上rollbackFor=Exception.class,可以让事务在遇到非运行时异常时也回滚。

@Transactional 注解一般可以作用在类或者方法上。

  • 作用于类:当把@Transactional 注解放在类上时,表示所有该类的 public 方法都配置相同的事务属性信息。
  • 作用于方法:当类配置了@Transactional,方法也配置了@Transactional,方法的事务会覆盖类的事务配置信息。

更多关于 Spring 事务的内容请查看我的这篇文章:可能是最漂亮的 Spring 事务管理详解 。

10. json 数据处理

10.1. 过滤 json 数据

@JsonIgnoreProperties 作用在类上用于过滤掉特定字段不返回或者不解析。

1
2
3
4
5
6
7
8
9
//生成json时将userRoles属性过滤
@JsonIgnoreProperties({"userRoles"})
public class User {

private String userName;
private String fullName;
private String password;
private List<UserRole> userRoles = new ArrayList<>();
}

@JsonIgnore一般用于类的属性上,作用和上面的@JsonIgnoreProperties 一样。

1
2
3
4
5
6
7
8
9
10

public class User {

private String userName;
private String fullName;
private String password;
//生成json时将userRoles属性过滤
@JsonIgnore
private List<UserRole> userRoles = new ArrayList<>();
}

10.2. 格式化 json 数据

@JsonFormat一般用来格式化 json 数据。

比如:

1
2
@JsonFormat(shape=JsonFormat.Shape.STRING, pattern="yyyy-MM-dd'T'HH:mm:ss.SSS'Z'", timezone="GMT")
private Date date;

10.3. 扁平化对象

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
@Getter
@Setter
@ToString
public class Account {
private Location location;
private PersonInfo personInfo;

@Getter
@Setter
@ToString
public static class Location {
private String provinceName;
private String countyName;
}
@Getter
@Setter
@ToString
public static class PersonInfo {
private String userName;
private String fullName;
}
}

未扁平化之前:

1
2
3
4
5
6
7
8
9
10
{
"location": {
"provinceName": "湖北",
"countyName": "武汉"
},
"personInfo": {
"userName": "coder1234",
"fullName": "shaungkou"
}
}

使用@JsonUnwrapped 扁平对象之后:

1
2
3
4
5
6
7
8
9
10
@Getter
@Setter
@ToString
public class Account {
@JsonUnwrapped
private Location location;
@JsonUnwrapped
private PersonInfo personInfo;
......
}
1
2
3
4
5
6
{
"provinceName": "湖北",
"countyName": "武汉",
"userName": "coder1234",
"fullName": "shaungkou"
}

11. 测试相关

@ActiveProfiles一般作用于测试类上, 用于声明生效的 Spring 配置文件。

1
2
3
4
5
6
@SpringBootTest(webEnvironment = RANDOM_PORT)
@ActiveProfiles("test")
@Slf4j
public abstract class TestBase {
......
}

@Test声明一个方法为测试方法

@Transactional被声明的测试方法的数据会回滚,避免污染测试数据。

@WithMockUser Spring Security 提供的,用来模拟一个真实用户,并且可以赋予权限。

1
2
3
4
5
6
@Test
@Transactional
@WithMockUser(username = "user-id-18163138155", authorities = "ROLE_TEACHER")
void should_import_student_success() throws Exception {
......
}

暂时总结到这里吧!虽然花了挺长时间才写完,不过可能还是会一些常用的注解的被漏掉,所以,我将文章也同步到了 Github 上去,Github 地址: 欢迎完善!

本文已经收录进我的 75K Star 的 Java 开源项目 JavaGuide:https://github.com/Snailclimb/JavaGuide。

一千行 MySQL 学习笔记

发表于 2023-03-11 | 分类于 数据库 , MYSQL | 阅读次数:
字数统计: 9.9k 字 | 阅读时长 ≈ 38 分钟

原文地址:https://shockerli.net/post/1000-line-mysql-note/ ,JavaGuide 对本文进行了简答排版,新增了目录。

非常不错的总结,强烈建议保存下来,需要的时候看一看。

基本操作

1
2
3
4
5
6
7
8
9
10
11
12
/* Windows服务 */
-- 启动 MySQL
net start mysql
-- 创建Windows服务
sc create mysql binPath= mysqld_bin_path(注意:等号与值之间有空格)
/* 连接与断开服务器 */
-- 连接 MySQL
mysql -h 地址 -P 端口 -u 用户名 -p 密码
-- 显示哪些线程正在运行
SHOW PROCESSLIST
-- 显示系统变量信息
SHOW VARIABLES

数据库操作

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/* 数据库操作 */
-- 查看当前数据库
SELECT DATABASE();
-- 显示当前时间、用户名、数据库版本
SELECT now(), user(), version();
-- 创建库
CREATE DATABASE[ IF NOT EXISTS] 数据库名 数据库选项
数据库选项:
CHARACTER SET charset_name
COLLATE collation_name
-- 查看已有库
SHOW DATABASES[ LIKE 'PATTERN']
-- 查看当前库信息
SHOW CREATE DATABASE 数据库名
-- 修改库的选项信息
ALTER DATABASE 库名 选项信息
-- 删除库
DROP DATABASE[ IF EXISTS] 数据库名
同时删除该数据库相关的目录及其目录内容

表的操作

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
/* 表的操作  */
-- 创建表
CREATE [TEMPORARY] TABLE[ IF NOT EXISTS] [库名.]表名 ( 表的结构定义 )[ 表选项]
每个字段必须有数据类型
最后一个字段后不能有逗号
TEMPORARY 临时表,会话结束时表自动消失
对于字段的定义:
字段名 数据类型 [NOT NULL | NULL] [DEFAULT default_value] [AUTO_INCREMENT] [UNIQUE [KEY] | [PRIMARY] KEY] [COMMENT 'string']
-- 表选项
-- 字符集
CHARSET = charset_name
如果表没有设定,则使用数据库字符集
-- 存储引擎
ENGINE = engine_name
表在管理数据时采用的不同的数据结构,结构不同会导致处理方式、提供的特性操作等不同
常见的引擎:InnoDB MyISAM Memory/Heap BDB Merge Example CSV MaxDB Archive
不同的引擎在保存表的结构和数据时采用不同的方式
MyISAM表文件含义:.frm表定义,.MYD表数据,.MYI表索引
InnoDB表文件含义:.frm表定义,表空间数据和日志文件
SHOW ENGINES -- 显示存储引擎的状态信息
SHOW ENGINE 引擎名 {LOGS|STATUS} -- 显示存储引擎的日志或状态信息
-- 自增起始数
AUTO_INCREMENT = 行数
-- 数据文件目录
DATA DIRECTORY = '目录'
-- 索引文件目录
INDEX DIRECTORY = '目录'
-- 表注释
COMMENT = 'string'
-- 分区选项
PARTITION BY ... (详细见手册)
-- 查看所有表
SHOW TABLES[ LIKE 'pattern']
SHOW TABLES FROM 库名
-- 查看表结构
SHOW CREATE TABLE 表名 (信息更详细)
DESC 表名 / DESCRIBE 表名 / EXPLAIN 表名 / SHOW COLUMNS FROM 表名 [LIKE 'PATTERN']
SHOW TABLE STATUS [FROM db_name] [LIKE 'pattern']
-- 修改表
-- 修改表本身的选项
ALTER TABLE 表名 表的选项
eg: ALTER TABLE 表名 ENGINE=MYISAM;
-- 对表进行重命名
RENAME TABLE 原表名 TO 新表名
RENAME TABLE 原表名 TO 库名.表名 (可将表移动到另一个数据库)
-- RENAME可以交换两个表名
-- 修改表的字段机构(13.1.2. ALTER TABLE语法)
ALTER TABLE 表名 操作名
-- 操作名
ADD[ COLUMN] 字段定义 -- 增加字段
AFTER 字段名 -- 表示增加在该字段名后面
FIRST -- 表示增加在第一个
ADD PRIMARY KEY(字段名) -- 创建主键
ADD UNIQUE [索引名] (字段名)-- 创建唯一索引
ADD INDEX [索引名] (字段名) -- 创建普通索引
DROP[ COLUMN] 字段名 -- 删除字段
MODIFY[ COLUMN] 字段名 字段属性 -- 支持对字段属性进行修改,不能修改字段名(所有原有属性也需写上)
CHANGE[ COLUMN] 原字段名 新字段名 字段属性 -- 支持对字段名修改
DROP PRIMARY KEY -- 删除主键(删除主键前需删除其AUTO_INCREMENT属性)
DROP INDEX 索引名 -- 删除索引
DROP FOREIGN KEY 外键 -- 删除外键
-- 删除表
DROP TABLE[ IF EXISTS] 表名 ...
-- 清空表数据
TRUNCATE [TABLE] 表名
-- 复制表结构
CREATE TABLE 表名 LIKE 要复制的表名
-- 复制表结构和数据
CREATE TABLE 表名 [AS] SELECT * FROM 要复制的表名
-- 检查表是否有错误
CHECK TABLE tbl_name [, tbl_name] ... [option] ...
-- 优化表
OPTIMIZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ...
-- 修复表
REPAIR [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ... [QUICK] [EXTENDED] [USE_FRM]
-- 分析表
ANALYZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ...

数据操作

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/* 数据操作 */ ------------------
-- 增
INSERT [INTO] 表名 [(字段列表)] VALUES (值列表)[, (值列表), ...]
-- 如果要插入的值列表包含所有字段并且顺序一致,则可以省略字段列表。
-- 可同时插入多条数据记录!
REPLACE与INSERT类似,唯一的区别是对于匹配的行,现有行(与主键/唯一键比较)的数据会被替换,如果没有现有行,则插入新行。
INSERT [INTO] 表名 SET 字段名=值[, 字段名=值, ...]
-- 查
SELECT 字段列表 FROM 表名[ 其他子句]
-- 可来自多个表的多个字段
-- 其他子句可以不使用
-- 字段列表可以用*代替,表示所有字段
-- 删
DELETE FROM 表名[ 删除条件子句]
没有条件子句,则会删除全部
-- 改
UPDATE 表名 SET 字段名=新值[, 字段名=新值] [更新条件]

字符集编码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/* 字符集编码 */ ------------------
-- MySQL、数据库、表、字段均可设置编码
-- 数据编码与客户端编码不需一致
SHOW VARIABLES LIKE 'character_set_%' -- 查看所有字符集编码项
character_set_client 客户端向服务器发送数据时使用的编码
character_set_results 服务器端将结果返回给客户端所使用的编码
character_set_connection 连接层编码
SET 变量名 = 变量值
SET character_set_client = gbk;
SET character_set_results = gbk;
SET character_set_connection = gbk;
SET NAMES GBK; -- 相当于完成以上三个设置
-- 校对集
校对集用以排序
SHOW CHARACTER SET [LIKE 'pattern']/SHOW CHARSET [LIKE 'pattern'] 查看所有字符集
SHOW COLLATION [LIKE 'pattern'] 查看所有校对集
CHARSET 字符集编码 设置字符集编码
COLLATE 校对集编码 设置校对集编码

数据类型(列类型)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
/* 数据类型(列类型) */ ------------------
1. 数值类型
-- a. 整型 ----------
类型 字节 范围(有符号位)
tinyint 1字节 -128 ~ 127 无符号位:0 ~ 255
smallint 2字节 -32768 ~ 32767
mediumint 3字节 -8388608 ~ 8388607
int 4字节
bigint 8字节
int(M) M表示总位数
- 默认存在符号位,unsigned 属性修改
- 显示宽度,如果某个数不够定义字段时设置的位数,则前面以0补填,zerofill 属性修改
例:int(5) 插入一个数'123',补填后为'00123'
- 在满足要求的情况下,越小越好。
- 1表示bool值真,0表示bool值假。MySQL没有布尔类型,通过整型0和1表示。常用tinyint(1)表示布尔型。
-- b. 浮点型 ----------
类型 字节 范围
float(单精度) 4字节
double(双精度) 8字节
浮点型既支持符号位 unsigned 属性,也支持显示宽度 zerofill 属性。
不同于整型,前后均会补填0.
定义浮点型时,需指定总位数和小数位数。
float(M, D) double(M, D)
M表示总位数,D表示小数位数。
M和D的大小会决定浮点数的范围。不同于整型的固定范围。
M既表示总位数(不包括小数点和正负号),也表示显示宽度(所有显示符号均包括)。
支持科学计数法表示。
浮点数表示近似值。
-- c. 定点数 ----------
decimal -- 可变长度
decimal(M, D) M也表示总位数,D表示小数位数。
保存一个精确的数值,不会发生数据的改变,不同于浮点数的四舍五入。
将浮点数转换为字符串来保存,每9位数字保存为4个字节。
2. 字符串类型
-- a. char, varchar ----------
char 定长字符串,速度快,但浪费空间
varchar 变长字符串,速度慢,但节省空间
M表示能存储的最大长度,此长度是字符数,非字节数。
不同的编码,所占用的空间不同。
char,最多255个字符,与编码无关。
varchar,最多65535字符,与编码有关。
一条有效记录最大不能超过65535个字节。
utf8 最大为21844个字符,gbk 最大为32766个字符,latin1 最大为65532个字符
varchar 是变长的,需要利用存储空间保存 varchar 的长度,如果数据小于255个字节,则采用一个字节来保存长度,反之需要两个字节来保存。
varchar 的最大有效长度由最大行大小和使用的字符集确定。
最大有效长度是65532字节,因为在varchar存字符串时,第一个字节是空的,不存在任何数据,然后还需两个字节来存放字符串的长度,所以有效长度是65535-1-2=65532字节。
例:若一个表定义为 CREATE TABLE tb(c1 int, c2 char(30), c3 varchar(N)) charset=utf8; 问N的最大值是多少? 答:(65535-1-2-4-30*3)/3
-- b. blob, text ----------
blob 二进制字符串(字节字符串)
tinyblob, blob, mediumblob, longblob
text 非二进制字符串(字符字符串)
tinytext, text, mediumtext, longtext
text 在定义时,不需要定义长度,也不会计算总长度。
text 类型在定义时,不可给default值
-- c. binary, varbinary ----------
类似于char和varchar,用于保存二进制字符串,也就是保存字节字符串而非字符字符串。
char, varchar, text 对应 binary, varbinary, blob.
3. 日期时间类型
一般用整型保存时间戳,因为PHP可以很方便的将时间戳进行格式化。
datetime 8字节 日期及时间 1000-01-01 00:00:00 到 9999-12-31 23:59:59
date 3字节 日期 1000-01-01 到 9999-12-31
timestamp 4字节 时间戳 19700101000000 到 2038-01-19 03:14:07
time 3字节 时间 -838:59:59 到 838:59:59
year 1字节 年份 1901 - 2155
datetime YYYY-MM-DD hh:mm:ss
timestamp YY-MM-DD hh:mm:ss
YYYYMMDDhhmmss
YYMMDDhhmmss
YYYYMMDDhhmmss
YYMMDDhhmmss
date YYYY-MM-DD
YY-MM-DD
YYYYMMDD
YYMMDD
YYYYMMDD
YYMMDD
time hh:mm:ss
hhmmss
hhmmss
year YYYY
YY
YYYY
YY
4. 枚举和集合
-- 枚举(enum) ----------
enum(val1, val2, val3...)
在已知的值中进行单选。最大数量为65535.
枚举值在保存时,以2个字节的整型(smallint)保存。每个枚举值,按保存的位置顺序,从1开始逐一递增。
表现为字符串类型,存储却是整型。
NULL值的索引是NULL。
空字符串错误值的索引值是0。
-- 集合(set) ----------
set(val1, val2, val3...)
create table tab ( gender set('男', '女', '无') );
insert into tab values ('男, 女');
最多可以有64个不同的成员。以bigint存储,共8个字节。采取位运算的形式。
当创建表时,SET成员值的尾部空格将自动被删除。

列属性(列约束)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/* 列属性(列约束) */ ------------------
1. PRIMARY 主键
- 能唯一标识记录的字段,可以作为主键。
- 一个表只能有一个主键。
- 主键具有唯一性。
- 声明字段时,用 primary key 标识。
也可以在字段列表之后声明
例:create table tab ( id int, stu varchar(10), primary key (id));
- 主键字段的值不能为null。
- 主键可以由多个字段共同组成。此时需要在字段列表后声明的方法。
例:create table tab ( id int, stu varchar(10), age int, primary key (stu, age));
2. UNIQUE 唯一索引(唯一约束)
使得某字段的值也不能重复。
3. NULL 约束
null不是数据类型,是列的一个属性。
表示当前列是否可以为null,表示什么都没有。
null, 允许为空。默认。
not null, 不允许为空。
insert into tab values (null, 'val');
-- 此时表示将第一个字段的值设为null, 取决于该字段是否允许为null
4. DEFAULT 默认值属性
当前字段的默认值。
insert into tab values (default, 'val'); -- 此时表示强制使用默认值。
create table tab ( add_time timestamp default current_timestamp );
-- 表示将当前时间的时间戳设为默认值。
current_date, current_time
5. AUTO_INCREMENT 自动增长约束
自动增长必须为索引(主键或unique)
只能存在一个字段为自动增长。
默认为1开始自动增长。可以通过表属性 auto_increment = x进行设置,或 alter table tbl auto_increment = x;
6. COMMENT 注释
例:create table tab ( id int ) comment '注释内容';
7. FOREIGN KEY 外键约束
用于限制主表与从表数据完整性。
alter table t1 add constraint `t1_t2_fk` foreign key (t1_id) references t2(id);
-- 将表t1的t1_id外键关联到表t2的id字段。
-- 每个外键都有一个名字,可以通过 constraint 指定
存在外键的表,称之为从表(子表),外键指向的表,称之为主表(父表)。
作用:保持数据一致性,完整性,主要目的是控制存储在外键表(从表)中的数据。
MySQL中,可以对InnoDB引擎使用外键约束:
语法:
foreign key (外键字段) references 主表名 (关联字段) [主表记录删除时的动作] [主表记录更新时的动作]
此时需要检测一个从表的外键需要约束为主表的已存在的值。外键在没有关联的情况下,可以设置为null.前提是该外键列,没有not null。
可以不指定主表记录更改或更新时的动作,那么此时主表的操作被拒绝。
如果指定了 on update 或 on delete:在删除或更新时,有如下几个操作可以选择:
1. cascade,级联操作。主表数据被更新(主键值更新),从表也被更新(外键值更新)。主表记录被删除,从表相关记录也被删除。
2. set null,设置为null。主表数据被更新(主键值更新),从表的外键被设置为null。主表记录被删除,从表相关记录外键被设置成null。但注意,要求该外键列,没有not null属性约束。
3. restrict,拒绝父表删除和更新。
注意,外键只被InnoDB存储引擎所支持。其他引擎是不支持的。

建表规范

1
2
3
4
5
6
7
8
9
10
11
12
13
14
/* 建表规范 */ ------------------
-- Normal Format, NF
- 每个表保存一个实体信息
- 每个具有一个ID字段作为主键
- ID主键 + 原子表
-- 1NF, 第一范式
字段不能再分,就满足第一范式。
-- 2NF, 第二范式
满足第一范式的前提下,不能出现部分依赖。
消除复合主键就可以避免部分依赖。增加单列关键字。
-- 3NF, 第三范式
满足第二范式的前提下,不能出现传递依赖。
某个字段依赖于主键,而有其他字段依赖于该字段。这就是传递依赖。
将一个实体信息的数据放在一个表内实现。

SELECT

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
/* SELECT */ ------------------
SELECT [ALL|DISTINCT] select_expr FROM -> WHERE -> GROUP BY [合计函数] -> HAVING -> ORDER BY -> LIMIT
a. select_expr
-- 可以用 * 表示所有字段。
select * from tb;
-- 可以使用表达式(计算公式、函数调用、字段也是个表达式)
select stu, 29+25, now() from tb;
-- 可以为每个列使用别名。适用于简化列标识,避免多个列标识符重复。
- 使用 as 关键字,也可省略 as.
select stu+10 as add10 from tb;
b. FROM 子句
用于标识查询来源。
-- 可以为表起别名。使用as关键字。
SELECT * FROM tb1 AS tt, tb2 AS bb;
-- from子句后,可以同时出现多个表。
-- 多个表会横向叠加到一起,而数据会形成一个笛卡尔积。
SELECT * FROM tb1, tb2;
-- 向优化符提示如何选择索引
USE INDEX、IGNORE INDEX、FORCE INDEX
SELECT * FROM table1 USE INDEX (key1,key2) WHERE key1=1 AND key2=2 AND key3=3;
SELECT * FROM table1 IGNORE INDEX (key3) WHERE key1=1 AND key2=2 AND key3=3;
c. WHERE 子句
-- 从from获得的数据源中进行筛选。
-- 整型1表示真,0表示假。
-- 表达式由运算符和运算数组成。
-- 运算数:变量(字段)、值、函数返回值
-- 运算符:
=, <=>, <>, !=, <=, <, >=, >, !, &&, ||,
in (not) null, (not) like, (not) in, (not) between and, is (not), and, or, not, xor
is/is not 加上true/false/unknown,检验某个值的真假
<=>与<>功能相同,<=>可用于null比较
d. GROUP BY 子句, 分组子句
GROUP BY 字段/别名 [排序方式]
分组后会进行排序。升序:ASC,降序:DESC
以下[合计函数]需配合 GROUP BY 使用:
count 返回不同的非NULL值数目 count(*)、count(字段)
sum 求和
max 求最大值
min 求最小值
avg 求平均值
group_concat 返回带有来自一个组的连接的非NULL值的字符串结果。组内字符串连接。
e. HAVING 子句,条件子句
与 where 功能、用法相同,执行时机不同。
where 在开始时执行检测数据,对原数据进行过滤。
having 对筛选出的结果再次进行过滤。
having 字段必须是查询出来的,where 字段必须是数据表存在的。
where 不可以使用字段的别名,having 可以。因为执行WHERE代码时,可能尚未确定列值。
where 不可以使用合计函数。一般需用合计函数才会用 having
SQL标准要求HAVING必须引用GROUP BY子句中的列或用于合计函数中的列。
f. ORDER BY 子句,排序子句
order by 排序字段/别名 排序方式 [,排序字段/别名 排序方式]...
升序:ASC,降序:DESC
支持多个字段的排序。
g. LIMIT 子句,限制结果数量子句
仅对处理好的结果进行数量限制。将处理好的结果的看作是一个集合,按照记录出现的顺序,索引从0开始。
limit 起始位置, 获取条数
省略第一个参数,表示从索引0开始。limit 获取条数
h. DISTINCT, ALL 选项
distinct 去除重复记录
默认为 all, 全部记录

UNION

1
2
3
4
5
6
7
8
/* UNION */ ------------------
将多个select查询的结果组合成一个结果集合。
SELECT ... UNION [ALL|DISTINCT] SELECT ...
默认 DISTINCT 方式,即所有返回的行都是唯一的
建议,对每个SELECT查询加上小括号包裹。
ORDER BY 排序时,需加上 LIMIT 进行结合。
需要各select查询的字段数量一样。
每个select查询的字段列表(数量、类型)应一致,因为结果中的字段名以第一条select语句为准。

子查询

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/* 子查询 */ ------------------
- 子查询需用括号包裹。
-- from型
from后要求是一个表,必须给子查询结果取个别名。
- 简化每个查询内的条件。
- from型需将结果生成一个临时表格,可用以原表的锁定的释放。
- 子查询返回一个表,表型子查询。
select * from (select * from tb where id>0) as subfrom where id>1;
-- where型
- 子查询返回一个值,标量子查询。
- 不需要给子查询取别名。
- where子查询内的表,不能直接用以更新。
select * from tb where money = (select max(money) from tb);
-- 列子查询
如果子查询结果返回的是一列。
使用 in 或 not in 完成查询
exists 和 not exists 条件
如果子查询返回数据,则返回1或0。常用于判断条件。
select column1 from t1 where exists (select * from t2);
-- 行子查询
查询条件是一个行。
select * from t1 where (id, gender) in (select id, gender from t2);
行构造符:(col1, col2, ...) 或 ROW(col1, col2, ...)
行构造符通常用于与对能返回两个或两个以上列的子查询进行比较。
-- 特殊运算符
!= all() 相当于 not in
= some() 相当于 in。any 是 some 的别名
!= some() 不等同于 not in,不等于其中某一个。
all, some 可以配合其他运算符一起使用。

连接查询(join)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/* 连接查询(join) */ ------------------
将多个表的字段进行连接,可以指定连接条件。
-- 内连接(inner join)
- 默认就是内连接,可省略inner。
- 只有数据存在时才能发送连接。即连接结果不能出现空行。
on 表示连接条件。其条件表达式与where类似。也可以省略条件(表示条件永远为真)
也可用where表示连接条件。
还有 using, 但需字段名相同。 using(字段名)
-- 交叉连接 cross join
即,没有条件的内连接。
select * from tb1 cross join tb2;
-- 外连接(outer join)
- 如果数据不存在,也会出现在连接结果中。
-- 左外连接 left join
如果数据不存在,左表记录会出现,而右表为null填充
-- 右外连接 right join
如果数据不存在,右表记录会出现,而左表为null填充
-- 自然连接(natural join)
自动判断连接条件完成连接。
相当于省略了using,会自动查找相同字段名。
natural join
natural left join
natural right join
select info.id, info.name, info.stu_num, extra_info.hobby, extra_info.sex from info, extra_info where info.stu_num = extra_info.stu_id;

TRUNCATE

1
2
3
4
5
6
7
8
9
/* TRUNCATE */ ------------------
TRUNCATE [TABLE] tbl_name
清空数据
删除重建表
区别:
1,truncate 是删除表再创建,delete 是逐条删除
2,truncate 重置auto_increment的值。而delete不会
3,truncate 不知道删除了几条,而delete知道。
4,当被用于带分区的表时,truncate 会保留分区

备份与还原

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/* 备份与还原 */ ------------------
备份,将数据的结构与表内数据保存起来。
利用 mysqldump 指令完成。
-- 导出
mysqldump [options] db_name [tables]
mysqldump [options] ---database DB1 [DB2 DB3...]
mysqldump [options] --all--database
1. 导出一张表
  mysqldump -u用户名 -p密码 库名 表名 > 文件名(D:/a.sql)
2. 导出多张表
  mysqldump -u用户名 -p密码 库名 表1 表2 表3 > 文件名(D:/a.sql)
3. 导出所有表
  mysqldump -u用户名 -p密码 库名 > 文件名(D:/a.sql)
4. 导出一个库
  mysqldump -u用户名 -p密码 --lock-all-tables --database 库名 > 文件名(D:/a.sql)
可以-w携带WHERE条件
-- 导入
1. 在登录mysql的情况下:
  source 备份文件
2. 在不登录的情况下
  mysql -u用户名 -p密码 库名 < 备份文件

视图

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
什么是视图:
视图是一个虚拟表,其内容由查询定义。同真实的表一样,视图包含一系列带有名称的列和行数据。但是,视图并不在数据库中以存储的数据值集形式存在。行和列数据来自由定义视图的查询所引用的表,并且在引用视图时动态生成。
视图具有表结构文件,但不存在数据文件。
对其中所引用的基础表来说,视图的作用类似于筛选。定义视图的筛选可以来自当前或其它数据库的一个或多个表,或者其它视图。通过视图进行查询没有任何限制,通过它们进行数据修改时的限制也很少。
视图是存储在数据库中的查询的sql语句,它主要出于两种原因:安全原因,视图可以隐藏一些数据,如:社会保险基金表,可以用视图只显示姓名,地址,而不显示社会保险号和工资数等,另一原因是可使复杂的查询易于理解和使用。
-- 创建视图
CREATE [OR REPLACE] [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}] VIEW view_name [(column_list)] AS select_statement
- 视图名必须唯一,同时不能与表重名。
- 视图可以使用select语句查询到的列名,也可以自己指定相应的列名。
- 可以指定视图执行的算法,通过ALGORITHM指定。
- column_list如果存在,则数目必须等于SELECT语句检索的列数
-- 查看结构
SHOW CREATE VIEW view_name
-- 删除视图
- 删除视图后,数据依然存在。
- 可同时删除多个视图。
DROP VIEW [IF EXISTS] view_name ...
-- 修改视图结构
- 一般不修改视图,因为不是所有的更新视图都会映射到表上。
ALTER VIEW view_name [(column_list)] AS select_statement
-- 视图作用
1. 简化业务逻辑
2. 对客户端隐藏真实的表结构
-- 视图算法(ALGORITHM)
MERGE 合并
将视图的查询语句,与外部查询需要先合并再执行!
TEMPTABLE 临时表
将视图执行完毕后,形成临时表,再做外层查询!
UNDEFINED 未定义(默认),指的是MySQL自主去选择相应的算法。

事务(transaction)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
事务是指逻辑上的一组操作,组成这组操作的各个单元,要不全成功要不全失败。
- 支持连续SQL的集体成功或集体撤销。
- 事务是数据库在数据完整性方面的一个功能。
- 需要利用 InnoDB 或 BDB 存储引擎,对自动提交的特性支持完成。
- InnoDB被称为事务安全型引擎。
-- 事务开启
START TRANSACTION; 或者 BEGIN;
开启事务后,所有被执行的SQL语句均被认作当前事务内的SQL语句。
-- 事务提交
COMMIT;
-- 事务回滚
ROLLBACK;
如果部分操作发生问题,映射到事务开启前。
-- 事务的特性
1. 原子性(Atomicity)
事务是一个不可分割的工作单位,事务中的操作要么都发生,要么都不发生。
2. 一致性(Consistency)
事务前后数据的完整性必须保持一致。
- 事务开始和结束时,外部数据一致
- 在整个事务过程中,操作是连续的
3. 隔离性(Isolation)
多个用户并发访问数据库时,一个用户的事务不能被其它用户的事务所干扰,多个并发事务之间的数据要相互隔离。
4. 持久性(Durability)
一个事务一旦被提交,它对数据库中的数据改变就是永久性的。
-- 事务的实现
1. 要求是事务支持的表类型
2. 执行一组相关的操作前开启事务
3. 整组操作完成后,都成功,则提交;如果存在失败,选择回滚,则会回到事务开始的备份点。
-- 事务的原理
利用InnoDB的自动提交(autocommit)特性完成。
普通的MySQL执行语句后,当前的数据提交操作均可被其他客户端可见。
而事务是暂时关闭“自动提交”机制,需要commit提交持久化数据操作。
-- 注意
1. 数据定义语言(DDL)语句不能被回滚,比如创建或取消数据库的语句,和创建、取消或更改表或存储的子程序的语句。
2. 事务不能被嵌套
-- 保存点
SAVEPOINT 保存点名称 -- 设置一个事务保存点
ROLLBACK TO SAVEPOINT 保存点名称 -- 回滚到保存点
RELEASE SAVEPOINT 保存点名称 -- 删除保存点
-- InnoDB自动提交特性设置
SET autocommit = 0|1; 0表示关闭自动提交,1表示开启自动提交。
- 如果关闭了,那普通操作的结果对其他客户端也不可见,需要commit提交后才能持久化数据操作。
- 也可以关闭自动提交来开启事务。但与START TRANSACTION不同的是,
SET autocommit是永久改变服务器的设置,直到下次再次修改该设置。(针对当前连接)
而START TRANSACTION记录开启前的状态,而一旦事务提交或回滚后就需要再次开启事务。(针对当前事务)

锁表

1
2
3
4
5
6
7
/* 锁表 */
表锁定只用于防止其它客户端进行不正当地读取和写入
MyISAM 支持表锁,InnoDB 支持行锁
-- 锁定
LOCK TABLES tbl_name [AS alias]
-- 解锁
UNLOCK TABLES

触发器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
/* 触发器 */ ------------------
触发程序是与表有关的命名数据库对象,当该表出现特定事件时,将激活该对象
监听:记录的增加、修改、删除。
-- 创建触发器
CREATE TRIGGER trigger_name trigger_time trigger_event ON tbl_name FOR EACH ROW trigger_stmt
参数:
trigger_time是触发程序的动作时间。它可以是 before 或 after,以指明触发程序是在激活它的语句之前或之后触发。
trigger_event指明了激活触发程序的语句的类型
INSERT:将新行插入表时激活触发程序
UPDATE:更改某一行时激活触发程序
DELETE:从表中删除某一行时激活触发程序
tbl_name:监听的表,必须是永久性的表,不能将触发程序与TEMPORARY表或视图关联起来。
trigger_stmt:当触发程序激活时执行的语句。执行多个语句,可使用BEGIN...END复合语句结构
-- 删除
DROP TRIGGER [schema_name.]trigger_name
可以使用old和new代替旧的和新的数据
更新操作,更新前是old,更新后是new.
删除操作,只有old.
增加操作,只有new.
-- 注意
1. 对于具有相同触发程序动作时间和事件的给定表,不能有两个触发程序。
-- 字符连接函数
concat(str1,str2,...])
concat_ws(separator,str1,str2,...)
-- 分支语句
if 条件 then
执行语句
elseif 条件 then
执行语句
else
执行语句
end if;
-- 修改最外层语句结束符
delimiter 自定义结束符号
SQL语句
自定义结束符号
delimiter ; -- 修改回原来的分号
-- 语句块包裹
begin
语句块
end
-- 特殊的执行
1. 只要添加记录,就会触发程序。
2. Insert into on duplicate key update 语法会触发:
如果没有重复记录,会触发 before insert, after insert;
如果有重复记录并更新,会触发 before insert, before update, after update;
如果有重复记录但是没有发生更新,则触发 before insert, before update
3. Replace 语法 如果有记录,则执行 before insert, before delete, after delete, after insert

SQL 编程

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/* SQL编程 */ ------------------
--// 局部变量 ----------
-- 变量声明
declare var_name[,...] type [default value]
这个语句被用来声明局部变量。要给变量提供一个默认值,请包含一个default子句。值可以被指定为一个表达式,不需要为一个常数。如果没有default子句,初始值为null。
-- 赋值
使用 set 和 select into 语句为变量赋值。
- 注意:在函数内是可以使用全局变量(用户自定义的变量)
--// 全局变量 ----------
-- 定义、赋值
set 语句可以定义并为变量赋值。
set @var = value;
也可以使用select into语句为变量初始化并赋值。这样要求select语句只能返回一行,但是可以是多个字段,就意味着同时为多个变量进行赋值,变量的数量需要与查询的列数一致。
还可以把赋值语句看作一个表达式,通过select执行完成。此时为了避免=被当作关系运算符看待,使用:=代替。(set语句可以使用= 和 :=)。
select @var:=20;
select @v1:=id, @v2=name from t1 limit 1;
select * from tbl_name where @var:=30;
select into 可以将表中查询获得的数据赋给变量。
-| select max(height) into @max_height from tb;
-- 自定义变量名
为了避免select语句中,用户自定义的变量与系统标识符(通常是字段名)冲突,用户自定义变量在变量名前使用@作为开始符号。
@var=10;
- 变量被定义后,在整个会话周期都有效(登录到退出)
--// 控制结构 ----------
-- if语句
if search_condition then
statement_list
[elseif search_condition then
statement_list]
...
[else
statement_list]
end if;
-- case语句
CASE value WHEN [compare-value] THEN result
[WHEN [compare-value] THEN result ...]
[ELSE result]
END
-- while循环
[begin_label:] while search_condition do
statement_list
end while [end_label];
- 如果需要在循环内提前终止 while循环,则需要使用标签;标签需要成对出现。
-- 退出循环
退出整个循环 leave
退出当前循环 iterate
通过退出的标签决定退出哪个循环
--// 内置函数 ----------
-- 数值函数
abs(x) -- 绝对值 abs(-10.9) = 10
format(x, d) -- 格式化千分位数值 format(1234567.456, 2) = 1,234,567.46
ceil(x) -- 向上取整 ceil(10.1) = 11
floor(x) -- 向下取整 floor (10.1) = 10
round(x) -- 四舍五入去整
mod(m, n) -- m%n m mod n 求余 10%3=1
pi() -- 获得圆周率
pow(m, n) -- m^n
sqrt(x) -- 算术平方根
rand() -- 随机数
truncate(x, d) -- 截取d位小数
-- 时间日期函数
now(), current_timestamp(); -- 当前日期时间
current_date(); -- 当前日期
current_time(); -- 当前时间
date('yyyy-mm-dd hh:ii:ss'); -- 获取日期部分
time('yyyy-mm-dd hh:ii:ss'); -- 获取时间部分
date_format('yyyy-mm-dd hh:ii:ss', '%d %y %a %d %m %b %j'); -- 格式化时间
unix_timestamp(); -- 获得unix时间戳
from_unixtime(); -- 从时间戳获得时间
-- 字符串函数
length(string) -- string长度,字节
char_length(string) -- string的字符个数
substring(str, position [,length]) -- 从str的position开始,取length个字符
replace(str ,search_str ,replace_str) -- 在str中用replace_str替换search_str
instr(string ,substring) -- 返回substring首次在string中出现的位置
concat(string [,...]) -- 连接字串
charset(str) -- 返回字串字符集
lcase(string) -- 转换成小写
left(string, length) -- 从string2中的左边起取length个字符
load_file(file_name) -- 从文件读取内容
locate(substring, string [,start_position]) -- 同instr,但可指定开始位置
lpad(string, length, pad) -- 重复用pad加在string开头,直到字串长度为length
ltrim(string) -- 去除前端空格
repeat(string, count) -- 重复count次
rpad(string, length, pad) --在str后用pad补充,直到长度为length
rtrim(string) -- 去除后端空格
strcmp(string1 ,string2) -- 逐字符比较两字串大小
-- 流程函数
case when [condition] then result [when [condition] then result ...] [else result] end 多分支
if(expr1,expr2,expr3) 双分支。
-- 聚合函数
count()
sum();
max();
min();
avg();
group_concat()
-- 其他常用函数
md5();
default();
--// 存储函数,自定义函数 ----------
-- 新建
CREATE FUNCTION function_name (参数列表) RETURNS 返回值类型
函数体
- 函数名,应该合法的标识符,并且不应该与已有的关键字冲突。
- 一个函数应该属于某个数据库,可以使用db_name.function_name的形式执行当前函数所属数据库,否则为当前数据库。
- 参数部分,由"参数名"和"参数类型"组成。多个参数用逗号隔开。
- 函数体由多条可用的mysql语句,流程控制,变量声明等语句构成。
- 多条语句应该使用 begin...end 语句块包含。
- 一定要有 return 返回值语句。
-- 删除
DROP FUNCTION [IF EXISTS] function_name;
-- 查看
SHOW FUNCTION STATUS LIKE 'partten'
SHOW CREATE FUNCTION function_name;
-- 修改
ALTER FUNCTION function_name 函数选项
--// 存储过程,自定义功能 ----------
-- 定义
存储存储过程 是一段代码(过程),存储在数据库中的sql组成。
一个存储过程通常用于完成一段业务逻辑,例如报名,交班费,订单入库等。
而一个函数通常专注与某个功能,视为其他程序服务的,需要在其他语句中调用函数才可以,而存储过程不能被其他调用,是自己执行 通过call执行。
-- 创建
CREATE PROCEDURE sp_name (参数列表)
过程体
参数列表:不同于函数的参数列表,需要指明参数类型
IN,表示输入型
OUT,表示输出型
INOUT,表示混合型
注意,没有返回值。

存储过程

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/* 存储过程 */ ------------------
存储过程是一段可执行性代码的集合。相比函数,更偏向于业务逻辑。
调用:CALL 过程名
-- 注意
- 没有返回值。
- 只能单独调用,不可夹杂在其他语句中
-- 参数
IN|OUT|INOUT 参数名 数据类型
IN 输入:在调用过程中,将数据输入到过程体内部的参数
OUT 输出:在调用过程中,将过程体处理完的结果返回到客户端
INOUT 输入输出:既可输入,也可输出
-- 语法
CREATE PROCEDURE 过程名 (参数列表)
BEGIN
过程体
END

用户和权限管理

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
/* 用户和权限管理 */ ------------------
-- root密码重置
1. 停止MySQL服务
2. [Linux] /usr/local/mysql/bin/safe_mysqld --skip-grant-tables &
[Windows] mysqld --skip-grant-tables
3. use mysql;
4. UPDATE `user` SET PASSWORD=PASSWORD("密码") WHERE `user` = "root";
5. FLUSH PRIVILEGES;
用户信息表:mysql.user
-- 刷新权限
FLUSH PRIVILEGES;
-- 增加用户
CREATE USER 用户名 IDENTIFIED BY [PASSWORD] 密码(字符串)
- 必须拥有mysql数据库的全局CREATE USER权限,或拥有INSERT权限。
- 只能创建用户,不能赋予权限。
- 用户名,注意引号:如 'user_name'@'192.168.1.1'
- 密码也需引号,纯数字密码也要加引号
- 要在纯文本中指定密码,需忽略PASSWORD关键词。要把密码指定为由PASSWORD()函数返回的混编值,需包含关键字PASSWORD
-- 重命名用户
RENAME USER old_user TO new_user
-- 设置密码
SET PASSWORD = PASSWORD('密码') -- 为当前用户设置密码
SET PASSWORD FOR 用户名 = PASSWORD('密码') -- 为指定用户设置密码
-- 删除用户
DROP USER 用户名
-- 分配权限/添加用户
GRANT 权限列表 ON 表名 TO 用户名 [IDENTIFIED BY [PASSWORD] 'password']
- all privileges 表示所有权限
- *.* 表示所有库的所有表
- 库名.表名 表示某库下面的某表
GRANT ALL PRIVILEGES ON `pms`.* TO 'pms'@'%' IDENTIFIED BY 'pms0817';
-- 查看权限
SHOW GRANTS FOR 用户名
-- 查看当前用户权限
SHOW GRANTS; 或 SHOW GRANTS FOR CURRENT_USER; 或 SHOW GRANTS FOR CURRENT_USER();
-- 撤消权限
REVOKE 权限列表 ON 表名 FROM 用户名
REVOKE ALL PRIVILEGES, GRANT OPTION FROM 用户名 -- 撤销所有权限
-- 权限层级
-- 要使用GRANT或REVOKE,您必须拥有GRANT OPTION权限,并且您必须用于您正在授予或撤销的权限。
全局层级:全局权限适用于一个给定服务器中的所有数据库,mysql.user
GRANT ALL ON *.*和 REVOKE ALL ON *.*只授予和撤销全局权限。
数据库层级:数据库权限适用于一个给定数据库中的所有目标,mysql.db, mysql.host
GRANT ALL ON db_name.*和REVOKE ALL ON db_name.*只授予和撤销数据库权限。
表层级:表权限适用于一个给定表中的所有列,mysql.talbes_priv
GRANT ALL ON db_name.tbl_name和REVOKE ALL ON db_name.tbl_name只授予和撤销表权限。
列层级:列权限适用于一个给定表中的单一列,mysql.columns_priv
当使用REVOKE时,您必须指定与被授权列相同的列。
-- 权限列表
ALL [PRIVILEGES] -- 设置除GRANT OPTION之外的所有简单权限
ALTER -- 允许使用ALTER TABLE
ALTER ROUTINE -- 更改或取消已存储的子程序
CREATE -- 允许使用CREATE TABLE
CREATE ROUTINE -- 创建已存储的子程序
CREATE TEMPORARY TABLES -- 允许使用CREATE TEMPORARY TABLE
CREATE USER -- 允许使用CREATE USER, DROP USER, RENAME USER和REVOKE ALL PRIVILEGES。
CREATE VIEW -- 允许使用CREATE VIEW
DELETE -- 允许使用DELETE
DROP -- 允许使用DROP TABLE
EXECUTE -- 允许用户运行已存储的子程序
FILE -- 允许使用SELECT...INTO OUTFILE和LOAD DATA INFILE
INDEX -- 允许使用CREATE INDEX和DROP INDEX
INSERT -- 允许使用INSERT
LOCK TABLES -- 允许对您拥有SELECT权限的表使用LOCK TABLES
PROCESS -- 允许使用SHOW FULL PROCESSLIST
REFERENCES -- 未被实施
RELOAD -- 允许使用FLUSH
REPLICATION CLIENT -- 允许用户询问从属服务器或主服务器的地址
REPLICATION SLAVE -- 用于复制型从属服务器(从主服务器中读取二进制日志事件)
SELECT -- 允许使用SELECT
SHOW DATABASES -- 显示所有数据库
SHOW VIEW -- 允许使用SHOW CREATE VIEW
SHUTDOWN -- 允许使用mysqladmin shutdown
SUPER -- 允许使用CHANGE MASTER, KILL, PURGE MASTER LOGS和SET GLOBAL语句,mysqladmin debug命令;允许您连接(一次),即使已达到max_connections。
UPDATE -- 允许使用UPDATE
USAGE -- “无权限”的同义词
GRANT OPTION -- 允许授予权限

表维护

1
2
3
4
5
6
7
8
/* 表维护 */
-- 分析和存储表的关键字分布
ANALYZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE 表名 ...
-- 检查一个或多个表是否有错误
CHECK TABLE tbl_name [, tbl_name] ... [option] ...
option = {QUICK | FAST | MEDIUM | EXTENDED | CHANGED}
-- 整理数据文件的碎片
OPTIMIZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ...

杂项

1
2
3
4
5
6
7
8
9
10
11
12
13
14
/* 杂项 */ ------------------
1. 可用反引号(`)为标识符(库名、表名、字段名、索引、别名)包裹,以避免与关键字重名!中文也可以作为标识符!
2. 每个库目录存在一个保存当前数据库的选项文件db.opt。
3. 注释:
单行注释 # 注释内容
多行注释 /* 注释内容 */
单行注释 -- 注释内容 (标准SQL注释风格,要求双破折号后加一空格符(空格、TAB、换行等))
4. 模式通配符:
_ 任意单个字符
% 任意多个字符,甚至包括零字符
单引号需要进行转义 \'
5. CMD命令行内的语句结束符可以为 ";", "\G", "\g",仅影响显示结果。其他地方还是用分号结束。delimiter 可修改当前对话的语句结束符。
6. SQL对大小写不敏感
7. 清除已有语句:\c
<i class="fa fa-angle-left"></i>1…91011…27<i class="fa fa-angle-right"></i>

264 日志
34 分类
38 标签
GitHub Zhihu Wechat
© 2024 史海杰 | Site words total count: 722k
由 Hexo 强力驱动
|
主题 — NexT.Pisces v5.1.4